ColorMapToLUT
Repository source: ColorMapToLUT
Description¶
Demonstrate a cone using the vtkDiscretizableColorTransferFunction to generate the colormap.
These two Python functions can be used to generate C++ and Python functions from a JSON or XML colormap. They can then be copied into ColorMapToLUT.cxx, ColorMapToLUT.py or into your own code.
Feel free to use either of these programs to generate different colormaps until you find one you like.
A good initial source for color maps is: SciVisColor -- this will provide you with plenty of XML examples.
ColorMapToLUT_JSON will allow you to select colormaps by name from ParaView Default Colormaps.
Question
If you have a question about this example, please use the VTK Discourse Forum
Code¶
ColorMapToLUT.py
#!/usr/bin/env python3
from dataclasses import dataclass
# noinspection PyUnresolvedReferences
import vtkmodules.vtkRenderingOpenGL2
from vtkmodules.vtkCommonColor import vtkNamedColors
from vtkmodules.vtkFiltersCore import vtkElevationFilter
from vtkmodules.vtkFiltersSources import vtkConeSource, vtkSphereSource
from vtkmodules.vtkInteractionStyle import vtkInteractorStyleTrackballCamera
from vtkmodules.vtkRenderingCore import (
vtkActor,
vtkDiscretizableColorTransferFunction,
vtkPolyDataMapper,
vtkRenderWindow,
vtkRenderWindowInteractor,
vtkRenderer
)
def main():
use_sphere = False
colors = vtkNamedColors()
colors.SetColor('ParaViewBkg', 82, 87, 110, 255)
ren = vtkRenderer(background=colors.GetColor3d('ParaViewBkg'))
ren_win = vtkRenderWindow(size=(640, 480), window_name='ColorMapToLUT')
ren_win.AddRenderer(ren)
iren = vtkRenderWindowInteractor()
iren.render_window = ren_win
style = vtkInteractorStyleTrackballCamera()
iren.interactor_style = style
if use_sphere:
sphere = vtkSphereSource(theta_resolution=64, phi_resolution=32)
bounds = sphere.update().output.GetBounds()
else:
cone = vtkConeSource(resolution=6, direction=(0, 1, 0), height=1)
bounds = cone.update().output.GetBounds()
elevation_filter = vtkElevationFilter(low_point=(0, bounds[2], 0), high_point=(0, bounds[3], 0))
ctf = get_ctf()
mapper = vtkPolyDataMapper(lookup_table=ctf, color_mode=Mapper.ColorMode.VTK_COLOR_MODE_MAP_SCALARS)
if use_sphere:
sphere >> elevation_filter >> mapper
else:
cone >> elevation_filter >> mapper
mapper.interpolate_scalars_before_mapping = True
actor = vtkActor(mapper=mapper)
ren.AddActor(actor)
ren_win.Render()
iren.Start()
def get_ctf():
# name: Fast, creator: Francesca Samsel and Alan W. Scott
# interpolationspace: RGB, space: rgb
# file name: Fast.json
ctf = vtkDiscretizableColorTransferFunction(color_space=ColorTransferFunction.ColorSpace.VTK_CTF_RGB,
scale=ColorTransferFunction.Scale.VTK_CTF_LINEAR,
nan_color=(0.0, 0.0, 0.0),
number_of_values=9, discretize=False)
ctf.AddRGBPoint(0, 0.05639999999999999, 0.05639999999999999, 0.47)
ctf.AddRGBPoint(0.17159223942480895, 0.24300000000000013, 0.4603500000000004, 0.81)
ctf.AddRGBPoint(0.2984914818394138, 0.3568143826543521, 0.7450246485363142, 0.954367702893722)
ctf.AddRGBPoint(0.4321287371255907, 0.6882, 0.93, 0.9179099999999999)
ctf.AddRGBPoint(0.5, 0.8994959551205902, 0.944646394975174, 0.7686567142818399)
ctf.AddRGBPoint(0.5882260353170073, 0.957107977357604, 0.8338185108985666, 0.5089156299842102)
ctf.AddRGBPoint(0.7061412605695164, 0.9275207599610714, 0.6214389091739178, 0.31535705838676426)
ctf.AddRGBPoint(0.8476395308725272, 0.8, 0.3520000000000001, 0.15999999999999998)
ctf.AddRGBPoint(1, 0.59, 0.07670000000000013, 0.11947499999999994)
return ctf
@dataclass(frozen=True)
class ColorTransferFunction:
@dataclass(frozen=True)
class ColorSpace:
VTK_CTF_RGB: int = 0
VTK_CTF_HSV: int = 1
VTK_CTF_LAB: int = 2
VTK_CTF_DIVERGING: int = 3
VTK_CTF_LAB_CIEDE2000: int = 4
VTK_CTF_STEP: int = 5
@dataclass(frozen=True)
class Scale:
VTK_CTF_LINEAR: int = 0
VTK_CTF_LOG10: int = 1
@dataclass(frozen=True)
class Mapper:
@dataclass(frozen=True)
class ColorMode:
VTK_COLOR_MODE_DEFAULT: int = 0
VTK_COLOR_MODE_MAP_SCALARS: int = 1
VTK_COLOR_MODE_DIRECT_SCALARS: int = 2
@dataclass(frozen=True)
class ResolveCoincidentTopology:
VTK_RESOLVE_OFF: int = 0
VTK_RESOLVE_POLYGON_OFFSET: int = 1
VTK_RESOLVE_SHIFT_ZBUFFER: int = 2
@dataclass(frozen=True)
class ScalarMode:
VTK_SCALAR_MODE_DEFAULT: int = 0
VTK_SCALAR_MODE_USE_POINT_DATA: int = 1
VTK_SCALAR_MODE_USE_CELL_DATA: int = 2
VTK_SCALAR_MODE_USE_POINT_FIELD_DATA: int = 3
VTK_SCALAR_MODE_USE_CELL_FIELD_DATA: int = 4
VTK_SCALAR_MODE_USE_FIELD_DATA: int = 5
if __name__ == '__main__':
main()