AlignTwoPolyDatas
Repository source: AlignTwoPolyDatas
Description¶
This example shows how to align two vtkPolyData's. Typically, the two datasets are related. For example, aligning a CT head isosurface with an MRI head isosurface of the same patient. Or two steps in a time series of an evolving surface. These cases usually reside in the same coordinate system, and the initial alignment is "close" to the desired results.
Another case is when the two datasets are from the "same" family of objects - for example, running the example with two types of sharks that exist in different coordinate systems.
The algorithm proceeds as follows:
-
Read the two vtkPolyData's that exist in the example's command line. The first file contains the source vtkPolyData to be aligned with the second file's vtkPolyData called the target. Another naming convention is moving and fixed.
-
Compute a measure of fit of the two original files. We use the recently added vtkHausdorffDistancePointSetFilter to compute the measure. See Hausdorff Distance.
-
Align the bounding boxes of the two datasets. Here we use a vtkOBBTree locator to create oriented bounding boxes. See Oriented Bounding Boxes. Use the bounding box corner coordinates to create source and target vtkLandmarkTransform's. vtkTransformPolyData uses this transform to create a new source vtkPolyData. Since the orientations of the bounding boxes may differ, the AlignBoundingBoxes function tries ten different rotations. For each rotation, it computes the Hausdorff distance between the target's OBB corners and the transformed source's OBB corners. Finally, transform the original source using the smallest distance.
-
Improve the alignment with vtkIterativeClosestPointTransform with a RigidBody transform. Compute the distance metric again.
-
Display the source and target vtkPolyData's with the transform that has the best distance metric.
Info
The example is run with src/Testing/Data/thingiverse/Grey_Nurse_Shark.stl
and src/Testing/Data/greatWhite.stl
, in this case, we reorient the target using a rotation. vtkTransformPolyDataFilter is used to get a better fit in this case.
Info
If example is run with src/Testing/Data/thingiverse/Grey_Nurse_Shark.stl
and src/Testing/Data/shark.ply
the fit is really poor and the Iterative Closest Point algotithm fails. So we fallback and use oriented bounding boxes.
Question
If you have a question about this example, please use the VTK Discourse Forum
Code¶
AlignTwoPolyDatas.py
#!/usr/bin/env python3
import math
from dataclasses import dataclass
from pathlib import Path
# noinspection PyUnresolvedReferences
import vtkmodules.vtkInteractionStyle
# noinspection PyUnresolvedReferences
import vtkmodules.vtkRenderingOpenGL2
from vtkmodules.vtkCommonColor import vtkNamedColors
from vtkmodules.vtkCommonCore import (
VTK_DOUBLE_MAX,
vtkPoints
)
from vtkmodules.vtkCommonDataModel import (
vtkIterativeClosestPointTransform,
vtkPolyData
)
from vtkmodules.vtkCommonTransforms import (
vtkLandmarkTransform,
vtkTransform
)
from vtkmodules.vtkFiltersGeneral import (
vtkOBBTree,
vtkTransformPolyDataFilter
)
from vtkmodules.vtkFiltersModeling import vtkHausdorffDistancePointSetFilter
from vtkmodules.vtkIOGeometry import (
vtkBYUReader,
vtkOBJReader,
vtkSTLReader
)
from vtkmodules.vtkIOLegacy import (
vtkPolyDataReader,
vtkPolyDataWriter
)
from vtkmodules.vtkIOPLY import vtkPLYReader
from vtkmodules.vtkIOXML import vtkXMLPolyDataReader
from vtkmodules.vtkInteractionWidgets import (
vtkCameraOrientationWidget,
vtkOrientationMarkerWidget
)
from vtkmodules.vtkRenderingAnnotation import vtkAxesActor
from vtkmodules.vtkRenderingCore import (
vtkActor,
vtkDataSetMapper,
vtkRenderWindow,
vtkRenderWindowInteractor,
vtkRenderer
)
def get_program_parameters():
import argparse
description = 'How to align two vtkPolyData\'s.'
epilogue = '''
'''
parser = argparse.ArgumentParser(description=description, epilog=epilogue,
formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument('src_fn', help='The polydata source file name,e.g. thingiverse/Grey_Nurse_Shark.stl.')
parser.add_argument('tgt_fn', help='The polydata target file name, e.g. greatWhite.stl.')
parser.add_argument('-w', action='store_true', help='Write out the aligned source and target as VTK files.')
parser.add_argument('-omw', action='store_false',
help='Use an OrientationMarkerWidget instead of a CameraOrientationWidget.')
args = parser.parse_args()
return args.src_fn, args.tgt_fn, args.w, args.omw
def main():
colors = vtkNamedColors()
src_fn, tgt_fn, write_data, use_camera_omw = get_program_parameters()
# Check that the files exist.
src_fp = Path(src_fn)
tgt_fp = Path(tgt_fn)
if not src_fp.is_file():
print(f'Nonexistent source: {src_fp}')
if not tgt_fp.is_file():
print(f'Nonexistent target: {tgt_fp}')
if not src_fp.is_file() or not tgt_fp.is_file():
return
print('Loading source:', src_fp)
source_polydata = read_poly_data(src_fp)
# Save the source polydata in case the alignment process
# does not improve segmentation.
original_source_polydata = vtkPolyData()
original_source_polydata.DeepCopy(source_polydata)
print('Loading target:', tgt_fn)
target_polydata = read_poly_data(tgt_fp)
# If the target orientation is markedly different, you may need to apply a
# transform to orient the target with the source.
# For example, when using Grey_Nurse_Shark.stl as the source and
# greatWhite.stl as the target, you need to transform the target.
trnf = vtkTransform()
if src_fp.name == 'Grey_Nurse_Shark.stl' and tgt_fp.name == 'greatWhite.stl':
trnf.RotateY(90)
tpd = vtkTransformPolyDataFilter(transform=trnf)
p = (target_polydata >> tpd).update().output
distance = vtkHausdorffDistancePointSetFilter()
distance.SetInputData(0, p)
distance.SetInputData(1, source_polydata)
distance.update()
distance_before_align = distance.GetOutput(0).field_data.GetArray('HausdorffDistance').GetComponent(0, 0)
# Get initial alignment using oriented bounding boxes.
align_bounding_boxes(source_polydata, tpd.output)
distance.SetInputData(0, p)
distance.SetInputData(1, source_polydata)
distance.update()
distance_after_align = distance.GetOutput(0).field_data.GetArray('HausdorffDistance').GetComponent(0, 0)
best_distance = min(distance_before_align, distance_after_align)
if distance_after_align > distance_before_align:
source_polydata.DeepCopy(original_source_polydata)
# Refine the alignment using IterativeClosestPoint.
icp = vtkIterativeClosestPointTransform(source=source_polydata, target=p,
maximum_number_of_landmarks=100, maximum_mean_distance=0.00001,
maximum_number_of_iterations=500,
check_mean_distance=True, start_by_matching_centroids=True)
icp.landmark_transform.mode = LandmarkTransform.Mode.VTK_LANDMARK_RIGIDBODY
icp.Update()
icp_mean_distance = icp.GetMeanDistance()
lm_transform = icp.landmark_transform
# transform = vtkTransformPolyDataFilter(transform=icp.landmark_transform, input_data=source_polydata)
transform = vtkTransformPolyDataFilter(transform=icp, input_data=source_polydata)
distance.SetInputData(0, p)
distance.SetInputData(1, transform.update().output)
distance.update()
# Note: If there is an error extracting eigenfunctions, then this will be zero.
distance_after_icp = distance.GetOutput(0).field_data.GetArray('HausdorffDistance').GetComponent(0, 0)
# Check if ICP worked.
if not (math.isnan(icp_mean_distance) or math.isinf(icp_mean_distance)):
if distance_after_icp < best_distance:
best_distance = distance_after_icp
print('Distances:')
print(' Before aligning: {:0.5f}'.format(distance_before_align))
print(' Aligning using oriented bounding boxes: {:0.5f}'.format(distance_before_align))
print(' Aligning using IterativeClosestPoint: {:0.5f}'.format(distance_after_icp))
print(' Best distance: {:0.5f}'.format(best_distance))
if write_data:
writer = vtkPolyDataWriter(file_name='AlignedSource.vtk')
if best_distance == distance_before_align:
writer.input_data = original_source_polydata
elif best_distance == distance_after_align:
writer.input_data = source_polydata
else:
writer.input_data = transform.output
writer.Write()
writer.file_name = 'Target.vtk'
tpd >> writer
writer.Write()
# Select the source to use.
source_mapper = vtkDataSetMapper(scalar_visibility=False)
if best_distance == distance_before_align:
original_source_polydata >> source_mapper
print('Using original alignment')
elif best_distance == distance_after_align:
source_polydata >> source_mapper
print('Using alignment by OBB')
else:
transform >> source_mapper
print('Using alignment by ICP')
# source_mapper.ScalarVisibilityOff()
source_actor = vtkActor(mapper=source_mapper)
source_actor.property.opacity = 0.6
source_actor.property.diffuse_color = colors.GetColor3d('White')
target_mapper = vtkDataSetMapper(scalar_visibility=False)
tpd >> target_mapper
target_actor = vtkActor(mapper=target_mapper)
target_actor.property.opacity = 1.0
target_actor.property.diffuse_color = colors.GetColor3d('Tomato')
renderer = vtkRenderer(use_hidden_line_removal=True, background=colors.GetColor3d('sea_green_light'))
render_window = vtkRenderWindow(size=(640, 480), window_name='AlignTwoPolyDatas')
render_window.AddRenderer(renderer)
interactor = vtkRenderWindowInteractor()
interactor.render_window = render_window
renderer.AddActor(source_actor)
renderer.AddActor(target_actor)
render_window.Render()
if use_camera_omw:
cam_orient_manipulator = vtkCameraOrientationWidget(parent_renderer=renderer)
# Enable the widget.
cam_orient_manipulator.On()
else:
axes = vtkAxesActor()
rgba = [0.0, 0.0, 0.0, 0.0]
colors.GetColor('Carrot', rgba)
widget = vtkOrientationMarkerWidget(orientation_marker=axes, outline_color=tuple(rgba[:3]),
interactor=interactor, viewport=(0.0, 0.0, 0.2, 0.2),
enabled=True, interactive=True)
interactor.Start()
def read_poly_data(file_name):
if not file_name:
print(f'No file name.')
return None
valid_suffixes = ['.g', '.obj', '.stl', '.ply', '.vtk', '.vtp']
path = Path(file_name)
ext = None
if path.suffix:
ext = path.suffix.lower()
if path.suffix not in valid_suffixes:
print(f'No reader for this file suffix: {ext}')
return None
reader = None
if ext == '.ply':
reader = vtkPLYReader(file_name=file_name)
elif ext == '.vtp':
reader = vtkXMLPolyDataReader(file_name=file_name)
elif ext == '.obj':
reader = vtkOBJReader(file_name=file_name)
elif ext == '.stl':
reader = vtkSTLReader(file_name=file_name)
elif ext == '.vtk':
reader = vtkPolyDataReader(file_name=file_name)
elif ext == '.g':
reader = vtkBYUReader(file_name=file_name)
if reader:
reader.update()
poly_data = reader.output
return poly_data
else:
return None
def align_bounding_boxes(source, target):
# Use OBBTree to create an oriented bounding box for target and source
source_obb_tree = vtkOBBTree(data_set=source, max_level=1)
source_obb_tree.BuildLocator()
target_obb_tree = vtkOBBTree(data_set=target, max_level=1)
target_obb_tree.BuildLocator()
source_landmarks = vtkPolyData()
source_obb_tree.GenerateRepresentation(0, source_landmarks)
target_landmarks = vtkPolyData()
target_obb_tree.GenerateRepresentation(0, target_landmarks)
lm_transform = vtkLandmarkTransform(target_landmarks=target_landmarks.points,
mode=LandmarkTransform.Mode.VTK_LANDMARK_SIMILARITY)
best_distance = VTK_DOUBLE_MAX
best_points = vtkPoints()
best_distance = best_bounding_box('X', target, source, target_landmarks, source_landmarks, best_distance,
best_points)
best_distance = best_bounding_box('Y', target, source, target_landmarks, source_landmarks, best_distance,
best_points)
best_distance = best_bounding_box('Z', target, source, target_landmarks, source_landmarks, best_distance,
best_points)
lm_transform.source_landmarks = best_points
lm_transform.Modified()
lm_transform_pd = vtkTransformPolyDataFilter(transform=lm_transform)
source >> lm_transform_pd
source.DeepCopy(lm_transform_pd.update().output)
return
def best_bounding_box(axis, target, source, target_landmarks, source_landmarks, best_distance, best_points):
lm_transform = vtkLandmarkTransform(target_landmarks=target_landmarks.points,
mode=LandmarkTransform.Mode.VTK_LANDMARK_SIMILARITY)
lm_transform_pd = vtkTransformPolyDataFilter()
source_center = source_landmarks.center
distance = vtkHausdorffDistancePointSetFilter()
test_transform = vtkTransform()
test_transform_pd = vtkTransformPolyDataFilter()
delta = 90.0
for i in range(0, 4):
angle = delta * i
# Rotate about center
test_transform.Identity()
test_transform.Translate(source_center[0], source_center[1], source_center[2])
if axis == 'X':
test_transform.RotateX(angle)
elif axis == 'Y':
test_transform.RotateY(angle)
else:
test_transform.RotateZ(angle)
test_transform.Translate(-source_center[0], -source_center[1], -source_center[2])
test_transform_pd.transform = test_transform
test_transform_pd.input_data = source_landmarks
test_transform_pd.update()
lm_transform.source_landmarks = test_transform_pd.output.points
lm_transform.Modified()
lm_transform_pd.input_data = source
lm_transform_pd.transform = lm_transform
distance.SetInputData(0, target)
distance.SetInputData(1, lm_transform_pd.update().output)
distance.update()
test_distance = distance.GetOutput(0).field_data.GetArray('HausdorffDistance').GetComponent(0, 0)
if test_distance < best_distance:
best_distance = test_distance
best_points.DeepCopy(test_transform_pd.GetOutput().GetPoints())
return best_distance
@dataclass(frozen=True)
class LandmarkTransform:
@dataclass(frozen=True)
class Mode:
VTK_LANDMARK_RIGIDBODY: int = 6
VTK_LANDMARK_SIMILARITY: int = 7
VTK_LANDMARK_AFFINE: int = 12
if __name__ == '__main__':
main()