Skip to content

OrientedCylinder

Repository source: OrientedCylinder

Description

This example illustrates how to create and display a cylinder that passes through two points.

It demonstrates two different ways to apply the transform:

  1. Use vtkTransformPolyDataFilter to create a new transformed polydata. This method is useful if the transformed polydata is needed later in the pipeline, e.g. vtkGlyph3DFilter.

  2. Apply the transform directly to the actor using vtkProp3D's SetUserMatrix. No new data is produced.

Switch between the two methods by setting USER_MATRIX to True or False.

Seealso

Compare this example with OrientedArrow. The transform is different because the cylinder height

direction is along the y-axis and the arrow height is along the x-axis.

Other languages

See (Cxx), (Python), (Java)

Question

If you have a question about this example, please use the VTK Discourse Forum

Code

OrientedCylinder.py

#!/usr/bin/env python3

# noinspection PyUnresolvedReferences
import vtkmodules.vtkInteractionStyle
# noinspection PyUnresolvedReferences
import vtkmodules.vtkRenderingOpenGL2
from vtkmodules.vtkCommonColor import vtkNamedColors
from vtkmodules.vtkCommonCore import (
    vtkMath,
    vtkMinimalStandardRandomSequence
)
from vtkmodules.vtkCommonMath import vtkMatrix4x4
from vtkmodules.vtkCommonTransforms import vtkTransform
from vtkmodules.vtkFiltersGeneral import vtkTransformPolyDataFilter
from vtkmodules.vtkFiltersSources import (
    vtkCylinderSource,
    vtkSphereSource
)
from vtkmodules.vtkRenderingCore import (
    vtkActor,
    vtkPolyDataMapper,
    vtkRenderWindow,
    vtkRenderWindowInteractor,
    vtkRenderer
)

"""
There are two alternative ways to apply the transform.
 1) Use vtkTransformPolyDataFilter to create a new transformed polydata.
    This method is useful if the transformed polydata is needed
      later in the pipeline
    To do this, set USER_MATRIX = True
 2) Apply the transform directly to the actor using vtkProp3D's SetUserMatrix.
    No new data is produced.
    To do this, set USER_MATRIX = False
"""
USER_MATRIX = True


def main():
    colors = vtkNamedColors()

    # Set the background color.
    colors.SetColor('BkgColor', 26, 51, 77, 255)

    # Create a cylinder.
    # Cylinder height vector is (0,1,0).
    # Cylinder center is in the middle of the cylinder
    cylinder_source = vtkCylinderSource(resolution=15)

    # Generate a random start and end point.
    start_point = [0] * 3
    end_point = [0] * 3
    rng = vtkMinimalStandardRandomSequence(seed=8775070)
    # rng.SetSeed(8775070)  # For testing.
    for i in range(0, 3):
        rng.Next()
        start_point[i] = rng.GetRangeValue(-10, 10)
        rng.Next()
        end_point[i] = rng.GetRangeValue(-10, 10)

    # Compute a basis
    normalized_x = [0] * 3
    normalized_y = [0] * 3
    normalized_z = [0] * 3

    # The X axis is a vector from start to end.
    vtkMath.Subtract(end_point, start_point, normalized_x)
    length = vtkMath.Norm(normalized_x)
    vtkMath.Normalize(normalized_x)

    # The Z axis is an arbitrary vector cross X.
    arbitrary = [0] * 3
    for i in range(0, 3):
        rng.Next()
        arbitrary[i] = rng.GetRangeValue(-10, 10)
    vtkMath.Cross(normalized_x, arbitrary, normalized_z)
    vtkMath.Normalize(normalized_z)

    # The Y axis is Z cross X
    vtkMath.Cross(normalized_z, normalized_x, normalized_y)
    matrix = vtkMatrix4x4()

    # Create the direction cosine matrix.
    matrix.Identity()
    for i in range(0, 3):
        matrix.SetElement(i, 0, normalized_x[i])
        matrix.SetElement(i, 1, normalized_y[i])
        matrix.SetElement(i, 2, normalized_z[i])

    # Apply the transforms
    transform = vtkTransform()
    transform.Translate(start_point)  # translate to starting point
    transform.Concatenate(matrix)  # apply direction cosines
    transform.RotateZ(-90.0)  # align cylinder to x-axis
    transform.Scale(1.0, length, 1.0)  # scale along the height vector
    transform.Translate(0, .5, 0)  # translate to start of cylinder

    transform_pd = vtkTransformPolyDataFilter(transform=transform)

    # Create a mapper and actor for the cylinder.
    mapper = vtkPolyDataMapper()
    actor = vtkActor()
    if USER_MATRIX:
        cylinder_source >> mapper
        actor.user_matrix = transform.matrix
    else:
        cylinder_source >> transform_pd >> mapper
    actor.mapper = mapper
    actor.property.color = colors.GetColor3d('Cyan')

    # Create spheres for the start and end points.
    sphere_start_source = vtkSphereSource(center=start_point, radius=0.8)
    sphere_start_mapper = vtkPolyDataMapper()
    sphere_start_source >> sphere_start_mapper
    sphere_start = vtkActor(mapper=sphere_start_mapper)
    sphere_start.property.color = colors.GetColor3d('Yellow')

    sphere_end_source = vtkSphereSource(center=end_point, radius=0.8)
    sphere_end_mapper = vtkPolyDataMapper()
    sphere_end_source >> sphere_end_mapper
    sphere_end = vtkActor(mapper=sphere_end_mapper)
    sphere_end.property.color = colors.GetColor3d('Magenta')

    # Create a renderer, render window, and interactor
    renderer = vtkRenderer(background=colors.GetColor3d('BkgColor'))
    render_window = vtkRenderWindow(window_name='OrientedCylinder')
    render_window.AddRenderer(renderer)
    render_window_interactor = vtkRenderWindowInteractor()
    render_window_interactor.render_window = render_window

    # Add the actors to the scene.
    renderer.AddActor(actor)
    renderer.AddActor(sphere_start)
    renderer.AddActor(sphere_end)

    # Render and interact.
    render_window.Render()
    render_window_interactor.Start()


if __name__ == '__main__':
    main()