Skip to content

IsoparametricCellsDemo

Repository source: IsoparametricCellsDemo

Description

This example shows the isoparametric cells supported by the VTK. These cells are nonlinear and contain one or more mid-side vertices. Isoparametric elements are typically used in finite element analysis. The term isoparametric is derived from the use of the same shape functions (or interpolation functions) to define the element's geometric shape as are used to define the displacements within the element.

Options are provided to show a wire frame (-w) or to add a back face color (-b). You can also remove the plinth with the (-n) option. If you want a single object, use -o followed by the object number.

This example illustrates each cell's representation using its parametric coordinates (pcoords) as the vertices of the cell. In practice, the vertices will correspond to physical points in a finite element model. Use vtkTessellatorFilter to better see the shape of the cell. See for example, QuadraticHexahedronDemo and QuadraticTetraDemo.

Other languages

See (Cxx), (PythonicAPI)

Question

If you have a question about this example, please use the VTK Discourse Forum

Code

IsoparametricCellsDemo.py

#!/usr/bin/env python3

# noinspection PyUnresolvedReferences
import vtkmodules.vtkInteractionStyle
# noinspection PyUnresolvedReferences
import vtkmodules.vtkRenderingOpenGL2
from vtkmodules.vtkCommonColor import vtkNamedColors
from vtkmodules.vtkCommonCore import (
    VTK_VERSION_NUMBER,
    vtkVersion
)
from vtkmodules.vtkCommonDataModel import (
    vtkBiQuadraticQuad,
    vtkBiQuadraticQuadraticHexahedron,
    vtkBiQuadraticQuadraticWedge,
    vtkBiQuadraticTriangle,
    vtkCubicLine,
    vtkQuadraticEdge,
    vtkQuadraticHexahedron,
    vtkQuadraticLinearQuad,
    vtkQuadraticLinearWedge,
    vtkQuadraticPolygon,
    vtkQuadraticPyramid,
    vtkQuadraticQuad,
    vtkQuadraticTetra,
    vtkQuadraticTriangle,
    vtkQuadraticWedge,
    vtkTriQuadraticHexahedron,
    vtkUnstructuredGrid
)
# noinspection PyUnresolvedReferences
from vtkmodules.vtkCommonTransforms import vtkTransform
# noinspection PyUnresolvedReferences
from vtkmodules.vtkFiltersGeneral import vtkTransformFilter
from vtkmodules.vtkFiltersSources import (
    vtkCubeSource,
    vtkSphereSource
)
from vtkmodules.vtkInteractionWidgets import (
    vtkCameraOrientationWidget,
    vtkOrientationMarkerWidget
)
from vtkmodules.vtkRenderingAnnotation import vtkAxesActor
from vtkmodules.vtkRenderingCore import (
    vtkActor,
    vtkActor2D,
    vtkDataSetMapper,
    vtkGlyph3DMapper,
    vtkLightKit,
    vtkPolyDataMapper,
    vtkProperty,
    vtkRenderer,
    vtkRenderWindow,
    vtkRenderWindowInteractor,
    vtkTextMapper,
    vtkTextProperty
)
from vtkmodules.vtkRenderingLabel import vtkLabeledDataMapper


def get_program_parameters():
    import argparse
    description = 'Demonstrate the isoparametric cell types found in VTK.'
    epilogue = '''
         The numbers define the ordering of the points making the cell.
    '''
    parser = argparse.ArgumentParser(description=description, epilog=epilogue,
                                     formatter_class=argparse.RawDescriptionHelpFormatter)
    group1 = parser.add_mutually_exclusive_group()
    group1.add_argument('-w', '--wireframe', action='store_true',
                        help='Render a wireframe.')
    group1.add_argument('-b', '--backface', action='store_true',
                        help='Display the back face in a different colour.')

    parser.add_argument('-o', '--object_number', type=int, default=None,
                        help='The number corresponding to the object.')
    parser.add_argument('-n', '--no_plinth', action='store_true',
                        help='Remove the plinth.')
    args = parser.parse_args()
    return args.wireframe, args.backface, args.object_number, args.no_plinth


def main():
    wireframe_on, backface_on, object_num, plinth_off = get_program_parameters()

    objects = specify_objects()
    # The order here should match the order in specify_objects().
    object_order = list(objects.keys())

    # Check for a single object.
    single_object = None
    if object_num:
        if object_num in object_order:
            single_object = True
        else:
            print('Object not found.\nPlease enter the number corresponding to the object.')
            print('Available objects are:')
            for obj in object_order:
                print(f'{objects[obj]} (={str(obj)})')
            return

    colors = vtkNamedColors()

    # Create one sphere for all.
    sphere = vtkSphereSource()
    sphere.SetPhiResolution(21)
    sphere.SetThetaResolution(21)
    sphere.SetRadius(0.04)

    cells = get_unstructured_grids()
    # The text to be displayed in the viewport.
    names = list()
    # The keys of the objects selected for display.
    keys = list()
    if single_object:
        names.append(f'{objects[object_num]} (={str(object_num)})')
        keys.append(object_num)
    else:
        for obj in object_order:
            names.append(f'{objects[obj]} (={str(obj)})')
            keys.append(obj)

    add_plinth = (24, 25, 12, 26, 27, 29, 31, 32, 33)
    lines = (21, 35)

    # Set up the viewports.
    grid_column_dimensions = 4
    grid_row_dimensions = 4
    renderer_size = 300
    if single_object:
        grid_column_dimensions = 1
        grid_row_dimensions = 1
        renderer_size = 1200
    window_size = (grid_column_dimensions * renderer_size, grid_row_dimensions * renderer_size)

    viewports = dict()
    blank = len(cells)
    blank_viewports = list()

    for row in range(0, grid_row_dimensions):
        for col in range(0, grid_column_dimensions):
            index = row * grid_column_dimensions + col
            # Set the renderer's viewport dimensions (xmin, ymin, xmax, ymax) within the render window.
            # Note that for the Y values, we need to subtract the row index from grid_rows
            #  because the viewport Y axis points upwards, and we want to draw the grid from top to down.
            viewport = (float(col) / grid_column_dimensions,
                        float(grid_row_dimensions - (row + 1)) / grid_row_dimensions,
                        float(col + 1) / grid_column_dimensions,
                        float(grid_row_dimensions - row) / grid_row_dimensions)

            if index < blank:
                viewports[keys[index]] = viewport
            else:
                s = f'vp_{col:d}_{row:d}'
                viewports[s] = viewport
                blank_viewports.append(s)

    ren_win = vtkRenderWindow()
    ren_win.SetSize(window_size)
    ren_win.SetWindowName('IsoparametricCellsDemo')

    iren = vtkRenderWindowInteractor()
    iren.SetRenderWindow(ren_win)
    # Since we always import vtkmodules.vtkInteractionStyle we can do this
    # because vtkInteractorStyleSwitch is automatically imported:
    iren.GetInteractorStyle().SetCurrentStyleToTrackballCamera()

    renderers = dict()

    # Create and link the mappers, actors and renderers together.
    single_object_key = None
    for idx, key in enumerate(keys):
        print('Creating:', names[idx])

        if single_object:
            single_object_key = key

        text_property = get_text_property()
        if single_object:
            text_property.SetFontSize(renderer_size // 28)
        else:
            text_property.SetFontSize(renderer_size // 24)

        text_mapper = vtkTextMapper()
        text_mapper.SetTextProperty(text_property)
        text_mapper.SetInput(names[idx])
        text_actor = vtkActor2D()
        text_actor.SetMapper(text_mapper)
        text_actor.SetPosition(renderer_size / 2.0, 8)

        mapper = vtkDataSetMapper()
        mapper.SetInputData(cells[key][0])
        actor = vtkActor()
        actor.SetMapper(mapper)
        actor.SetProperty(get_actor_property())

        if wireframe_on or key in lines:
            actor.GetProperty().SetRepresentationToWireframe()
            actor.GetProperty().SetLineWidth(2)
            actor.GetProperty().SetOpacity(1)
            actor.GetProperty().SetColor(colors.GetColor3d('Black'))
        else:
            if backface_on:
                actor.SetBackfaceProperty(get_back_face_property())

        # Label the points.
        label_property = get_label_property()
        if single_object:
            label_property.SetFontSize(renderer_size // 36)
        else:
            label_property.SetFontSize(renderer_size // 16)

        label_mapper = vtkLabeledDataMapper()
        label_mapper.SetInputData(cells[key][0])
        label_mapper.SetLabelTextProperty(label_property)

        label_actor = vtkActor2D()
        label_actor.SetMapper(label_mapper)

        # Glyph the points.
        point_mapper = vtkGlyph3DMapper()
        point_mapper.SetInputData(cells[key][0])
        point_mapper.SetSourceConnection(sphere.GetOutputPort())
        point_mapper.ScalingOn()
        point_mapper.ScalarVisibilityOff()

        point_actor = vtkActor()
        point_actor.SetMapper(point_mapper)
        point_actor.SetProperty(get_point_actor_property())

        renderer = vtkRenderer()
        renderer.SetBackground(colors.GetColor3d('LightSteelBlue'))
        renderer.SetViewport(viewports[key])

        light_kit = vtkLightKit()
        light_kit.AddLightsToRenderer(renderer)

        renderer.AddActor(text_actor)
        renderer.AddActor(actor)
        renderer.AddActor(label_actor)
        renderer.AddActor(point_actor)
        if not plinth_off:
            # Add a plinth.
            if key in add_plinth:
                tile_actor = make_tile(cells[key][0].GetBounds(),
                                       expansion_factor=0.5, thickness_ratio=0.01, shift_y=-0.05)
                tile_actor.SetProperty(get_tile_property())
                renderer.AddActor(tile_actor)

        renderer.ResetCamera()
        renderer.GetActiveCamera().Azimuth(cells[key][1])
        renderer.GetActiveCamera().Elevation(cells[key][2])
        renderer.GetActiveCamera().Dolly(cells[key][3])
        renderer.ResetCameraClippingRange()

        renderers[key] = renderer
        ren_win.AddRenderer(renderers[key])

    for name in blank_viewports:
        viewport = viewports[name]
        renderer = vtkRenderer()
        renderer.SetBackground = colors.GetColor3d('LightSteelBlue')
        renderer.SetViewport(viewport)

        renderers[name] = renderer
        ren_win.AddRenderer(renderers[name])

    if single_object:
        if vtk_version_ok(9, 0, 20210718):
            try:
                cam_orient_manipulator = vtkCameraOrientationWidget()
                cam_orient_manipulator.SetParentRenderer(renderers[single_object_key])
                cam_orient_manipulator.SetInteractor(iren)
                # Enable the widget.
                cam_orient_manipulator.On()
            except AttributeError:
                pass
        else:
            axes = vtkAxesActor()
            widget = vtkOrientationMarkerWidget()
            rgba = [0.0, 0.0, 0.0, 0.0]
            colors.GetColor("Carrot", rgba)
            widget.SetOutlineColor(rgba[0], rgba[1], rgba[2])
            widget.SetOrientationMarker(axes)
            widget.SetInteractor(iren)
            widget.SetViewport(0.0, 0.0, 0.2, 0.2)
            widget.EnabledOn()
            widget.InteractiveOn()

    ren_win.Render()
    iren.Initialize()
    iren.Start()


def specify_objects():
    """
    Link the unstructured grid number to the unstructured grid name.

    :return: A dictionary: {index number: unstructured grid name}.
    """
    objects = {
        21: 'VTK_QUADRATIC_EDGE',
        22: 'VTK_QUADRATIC_TRIANGLE',
        23: 'VTK_QUADRATIC_QUAD',
        36: 'VTK_QUADRATIC_POLYGON',
        24: 'VTK_QUADRATIC_TETRA',
        25: 'VTK_QUADRATIC_HEXAHEDRON',
        26: 'VTK_QUADRATIC_WEDGE',
        27: 'VTK_QUADRATIC_PYRAMID',
        28: 'VTK_BIQUADRATIC_QUAD',
        29: 'VTK_TRIQUADRATIC_HEXAHEDRON',
        30: 'VTK_QUADRATIC_LINEAR_QUAD',
        31: 'VTK_QUADRATIC_LINEAR_WEDGE',
        32: 'VTK_BIQUADRATIC_QUADRATIC_WEDGE',
        33: 'VTK_BIQUADRATIC_QUADRATIC_HEXAHEDRON',
        34: 'VTK_BIQUADRATIC_TRIANGLE',
        35: 'VTK_CUBIC_LINE',
    }
    return objects


def get_unstructured_grids():
    """
    Get the unstructured grid names, the unstructured grid and initial orientations.

    Get the unstructured grid names, the unstructured grid and initial orientations.

    :return: A dictionary: {index number: (unstructured grid, azimuth, elevation and dolly)}.
    """

    return {
        21: (make_ug(vtkQuadraticEdge()), 0, 0, 0.8),
        22: (make_ug(vtkQuadraticTriangle()), 0, 0, 0),
        23: (make_ug(vtkQuadraticQuad()), 0, 0, 0),
        36: (make_quadratic_polygon(), 0, 0, 0),
        24: (make_ug(vtkQuadraticTetra()), 20, 20, 1.0),
        25: (make_ug(vtkQuadraticHexahedron()), -30, 12, 0.95),
        26: (make_ug(vtkQuadraticWedge()), 45, 15, 1.0),
        27: (make_quadratic_pyramid(), -110, 8, 1.0),
        28: (make_ug(vtkBiQuadraticQuad()), 0, 0, 0),
        29: (make_ug(vtkTriQuadraticHexahedron()), -15, 15, 0.95),
        30: (make_ug(vtkQuadraticLinearQuad()), 0, 0, 0),
        31: (make_ug(vtkQuadraticLinearWedge()), 60, 22.5, 1.0),
        32: (make_ug(vtkBiQuadraticQuadraticWedge()), 70, 22.5, 1.0),
        33: (make_ug(vtkBiQuadraticQuadraticHexahedron()), -15, 15, 0.95),
        34: (make_ug(vtkBiQuadraticTriangle()), 0, 0, 0),
        35: (make_ug(vtkCubicLine()), 0, 0, 0.85),
    }


# These functions return a vtkUnstructured grid corresponding to the object.

def make_ug(cell):
    pcoords = cell.GetParametricCoords()
    for i in range(0, cell.number_of_points):
        cell.point_ids.SetId(i, i)
        cell.points.SetPoint(i, (pcoords[3 * i]), (pcoords[3 * i + 1]), (pcoords[3 * i + 2]))

    ug = vtkUnstructuredGrid()
    ug.SetPoints(cell.GetPoints())
    ug.InsertNextCell(cell.cell_type, cell.point_ids)
    return ug


def make_quadratic_polygon():
    number_of_vertices = 8

    quadratic_polygon = vtkQuadraticPolygon()

    quadratic_polygon.points.SetNumberOfPoints(8)

    quadratic_polygon.points.SetPoint(0, 0.0, 0.0, 0.0)
    quadratic_polygon.points.SetPoint(1, 2.0, 0.0, 0.0)
    quadratic_polygon.points.SetPoint(2, 2.0, 2.0, 0.0)
    quadratic_polygon.points.SetPoint(3, 0.0, 2.0, 0.0)
    quadratic_polygon.points.SetPoint(4, 1.0, 0.0, 0.0)
    quadratic_polygon.points.SetPoint(5, 2.0, 1.0, 0.0)
    quadratic_polygon.points.SetPoint(6, 1.0, 2.0, 0.0)
    quadratic_polygon.points.SetPoint(7, 0.0, 1.0, 0.0)
    quadratic_polygon.points.SetPoint(5, 3.0, 1.0, 0.0)

    quadratic_polygon.point_ids.SetNumberOfIds(number_of_vertices)
    for i in range(0, number_of_vertices):
        quadratic_polygon.point_ids.SetId(i, i)

    ug = vtkUnstructuredGrid(points=quadratic_polygon.points)
    ug.SetPoints(quadratic_polygon.GetPoints())
    ug.InsertNextCell(quadratic_polygon.cell_type, quadratic_polygon.point_ids)

    return ug


def make_quadratic_pyramid():
    cell = vtkQuadraticPyramid()
    pcoords = cell.GetParametricCoords()
    for i in range(0, cell.number_of_points):
        cell.point_ids.SetId(i, i)
        cell.points.SetPoint(i, (pcoords[3 * i]), (pcoords[3 * i + 1]), (pcoords[3 * i + 2]))

    ug = vtkUnstructuredGrid(points=cell.points)
    ug.SetPoints(cell.GetPoints())
    ug.InsertNextCell(cell.cell_type, cell.point_ids)

    t = vtkTransform()
    t.RotateX(-90)
    t.Translate(0, 0, 0)

    tf = vtkTransformFilter()
    tf.SetTransform(t)
    tf.SetInputData(ug)
    tf.Update()

    # Put the transformed points back.
    ug.SetPoints(tf.GetOutput().GetPoints())

    return ug


def make_tile(bounds, expansion_factor=0.5, thickness_ratio=0.05, shift_y=-0.05):
    """
    Make a tile slightly larger or smaller than the bounds in the
      X and Z directions and thinner or thicker in the Y direction.

    A thickness_ratio of zero reduces the tile to an XZ plane.

    :param bounds: The bounds for the tile.
    :param expansion_factor: The expansion factor in the XZ plane.
    :param thickness_ratio: The thickness ratio in the Y direction, >= 0.
    :param shift_y: Used to shift the centre of the plinth in the Y-direction.
    :return: An actor corresponding to the tile.
    """

    d_xyz = (
        bounds[1] - bounds[0],
        bounds[3] - bounds[2],
        bounds[5] - bounds[4]
    )
    thickness = d_xyz[2] * abs(thickness_ratio)
    center = ((bounds[1] + bounds[0]) / 2.0,
              bounds[2] - thickness / 2.0 + shift_y,
              (bounds[5] + bounds[4]) / 2.0)
    x_length = bounds[1] - bounds[0] + (d_xyz[0] * expansion_factor)
    z_length = bounds[5] - bounds[4] + (d_xyz[2] * expansion_factor)
    plane = vtkCubeSource()
    plane.SetCenter(center)
    plane.SetXLength(x_length)
    plane.SetYLength(thickness)
    plane.SetZLength(z_length)

    plane_mapper = vtkPolyDataMapper()
    plane_mapper.SetInputConnection(plane.GetOutputPort())

    tile_actor = vtkActor()
    tile_actor.SetMapper(plane_mapper)

    return tile_actor


def get_text_property():
    colors = vtkNamedColors()

    pty = vtkTextProperty()
    pty.BoldOn()
    pty.SetJustificationToCentered()
    pty.SetColor(colors.GetColor3d('Black'))
    return pty


def get_label_property():
    colors = vtkNamedColors()

    pty = vtkTextProperty()
    pty.BoldOn()
    pty.ShadowOn()
    pty.SetJustificationToCentered()
    pty.SetColor(colors.GetColor3d('DeepPink'))
    return pty


def get_back_face_property():
    colors = vtkNamedColors()

    pty = vtkProperty()
    pty.SetAmbientColor(colors.GetColor3d('LightSalmon'))
    pty.SetDiffuseColor(colors.GetColor3d('OrangeRed'))
    pty.SetSpecularColor(colors.GetColor3d('White'))
    pty.SetSpecular(0.2)
    pty.SetDiffuse(1.0)
    pty.SetAmbient(0.2)
    pty.SetSpecularPower(20.0)
    pty.SetOpacity(1.0)
    return pty


def get_actor_property():
    colors = vtkNamedColors()

    pty = vtkProperty()
    pty.SetAmbientColor(colors.GetColor3d('DarkSalmon'))
    pty.SetDiffuseColor(colors.GetColor3d('Seashell'))
    pty.SetSpecularColor(colors.GetColor3d('White'))
    pty.SetSpecular(0.5)
    pty.SetDiffuse(0.7)
    pty.SetAmbient(0.5)
    pty.SetSpecularPower(20.0)
    pty.SetOpacity(0.9)
    pty.EdgeVisibilityOn()
    pty.SetLineWidth(3)
    return pty


def get_point_actor_property():
    colors = vtkNamedColors()

    pty = vtkProperty()
    pty.SetAmbientColor(colors.GetColor3d('Gold'))
    pty.SetDiffuseColor(colors.GetColor3d('Yellow'))
    pty.SetSpecularColor(colors.GetColor3d('White'))
    pty.SetSpecular(0.5)
    pty.SetDiffuse(0.7)
    pty.SetAmbient(0.5)
    pty.SetSpecularPower(20.0)
    pty.SetOpacity(1.0)
    return pty


def get_tile_property():
    colors = vtkNamedColors()

    pty = vtkProperty()
    pty.SetAmbientColor(colors.GetColor3d('SteelBlue'))
    pty.SetDiffuseColor(colors.GetColor3d('LightSteelBlue'))
    pty.SetSpecularColor(colors.GetColor3d('White'))
    pty.SetSpecular(0.5)
    pty.SetDiffuse(0.7)
    pty.SetAmbient(0.5)
    pty.SetSpecularPower(20.0)
    pty.SetOpacity(0.8)
    pty.EdgeVisibilityOn()
    pty.SetLineWidth(1)
    return pty


def vtk_version_ok(major, minor, build):
    """
    Check the VTK version.

    :param major: Major version.
    :param minor: Minor version.
    :param build: Build version.
    :return: True if the requested VTK version is greater or equal to the actual VTK version.
    """
    needed_version = 10000000000 * int(major) + 100000000 * int(minor) + int(build)
    try:
        vtk_version_number = VTK_VERSION_NUMBER
    except AttributeError:  # as error:
        ver = vtkVersion()
        vtk_version_number = 10000000000 * ver.GetVTKMajorVersion() + 100000000 * ver.GetVTKMinorVersion() \
                             + ver.GetVTKBuildVersion()
    if vtk_version_number >= needed_version:
        return True
    else:
        return False


if __name__ == '__main__':
    main()