MedicalDemo3
Repository source: MedicalDemo3
Description¶
Composite image of three planes and translucent skin
Usage
MedicalDemo3 FullHead.mhd
Note
This original source code for this example is here.
Info
See Figure 12-4 in Chapter 12 the VTK Textbook.
Info
The example uses src/Testing/Data/FullHead.mhd
which references src/Testing/Data/FullHead.raw.gz
.
Question
If you have a question about this example, please use the VTK Discourse Forum
Code¶
MedicalDemo3.java
import vtk.vtkActor;
import vtk.vtkNamedColors;
import vtk.vtkNativeLibrary;
import vtk.vtkPolyDataMapper;
import vtk.vtkRenderWindow;
import vtk.vtkRenderWindowInteractor;
import vtk.vtkRenderer;
import vtk.vtkMetaImageReader;
import vtk.vtkMarchingCubes;
import vtk.vtkOutlineFilter;
import vtk.vtkCamera;
import vtk.vtkStripper;
import vtk.vtkLookupTable;
import vtk.vtkImageMapToColors;
import vtk.vtkImageActor;
public class MedicalDemo3
{
// -----------------------------------------------------------------
// Load VTK library and print which library was not properly loaded
static
{
if (!vtkNativeLibrary.LoadAllNativeLibraries())
{
for (vtkNativeLibrary lib : vtkNativeLibrary.values())
{
if (!lib.IsLoaded())
{
System.out.println(lib.GetLibraryName() + " not loaded");
}
}
}
vtkNativeLibrary.DisableOutputWindow(null);
}
// -----------------------------------------------------------------
public static void main(String args[])
{
//parse command line arguments
if (args.length != 1)
{
System.err.println("Usage: java -classpath ... Filename(.mhd) e.g FullHead.mhd");
return;
}
String inputFilename = args[0];
vtkNamedColors colors = new vtkNamedColors();
//For bone Color
double boneColor[] = new double[4];
//For skin Color
double skinColor[] = new double[4];
//For outline Color
double outlineColor[] = new double[4];
//Renderer Background Color
double Bgcolor[] = new double[4];
colors.GetColor("Ivory", boneColor);
colors.GetColor("Coral", skinColor);
colors.GetColor("Black", outlineColor);
colors.GetColor("SteelBlue", Bgcolor);
// Create the renderer, render window and interactor.
vtkRenderer ren = new vtkRenderer();
vtkRenderWindow renWin = new vtkRenderWindow();
renWin.AddRenderer(ren);
vtkRenderWindowInteractor iren = new vtkRenderWindowInteractor();
iren.SetRenderWindow(renWin);
// The following reader is used to read a series of 2D slices (images)
// that compose the volume. The slice dimensions are set, and the
// pixel spacing. The data Endianness must also be specified. The reader
// uses the FilePrefix in combination with the slice number to construct
// filenames using the format FilePrefix.%d. (In this case the FilePrefix
// is the root name of the file: quarter.)
vtkMetaImageReader reader = new vtkMetaImageReader();
reader.SetFileName(inputFilename);
reader.Update();
// An isosurface, or contour value of 500 is known to correspond to the
// skin of the patient.
// The triangle stripper is used to create triangle strips from the
// isosurface; these render much faster on many systems.
vtkMarchingCubes skinExtractor = new vtkMarchingCubes();
skinExtractor.SetInputConnection(reader.GetOutputPort());
skinExtractor.SetValue(0, 500);
skinExtractor.Update();
vtkStripper skinStripper = new vtkStripper();
skinStripper.SetInputConnection(skinExtractor.GetOutputPort());
skinStripper.Update();
vtkPolyDataMapper skinMapper = new vtkPolyDataMapper();
skinMapper.SetInputConnection(skinStripper.GetOutputPort());
skinMapper.ScalarVisibilityOff();
vtkActor skin = new vtkActor();
skin.SetMapper(skinMapper);
skin.GetProperty().SetDiffuseColor(skinColor);
skin.GetProperty().SetSpecular(.3);
skin.GetProperty().SetSpecularPower(20);
// An isosurface, or contour value of 1150 is known to correspond to the
// bone of the patient.
// The triangle stripper is used to create triangle strips from the
// isosurface; these render much faster on may systems.
vtkMarchingCubes boneExtractor = new vtkMarchingCubes();
boneExtractor.SetInputConnection(reader.GetOutputPort());
boneExtractor.SetValue(0, 1150);
vtkStripper boneStripper = new vtkStripper();
boneStripper.SetInputConnection(boneExtractor.GetOutputPort());
vtkPolyDataMapper boneMapper = new vtkPolyDataMapper();
boneMapper.SetInputConnection(boneStripper.GetOutputPort());
boneMapper.ScalarVisibilityOff();
vtkActor bone = new vtkActor();
bone.SetMapper(boneMapper);
bone.GetProperty().SetDiffuseColor(boneColor);
// An outline provides context around the data.
vtkOutlineFilter outlineData = new vtkOutlineFilter();
outlineData.SetInputConnection(reader.GetOutputPort());
vtkPolyDataMapper mapOutline = new vtkPolyDataMapper();
mapOutline.SetInputConnection(outlineData.GetOutputPort());
vtkActor outline = new vtkActor();
outline.SetMapper(mapOutline);
outline.GetProperty().SetColor(outlineColor);
// Now we are creating three orthogonal planes passing through the volume.
// Each plane uses a different texture map and therefore has different coloration.
// Start by creating a black/white lookup table.
vtkLookupTable bwLut = new vtkLookupTable();
bwLut.SetTableRange (0, 2000);
bwLut.SetSaturationRange (0, 0);
bwLut.SetHueRange (0, 0);
bwLut.SetValueRange (0, 1);
bwLut.Build(); //effective built
// Now create a lookup table that consists of the full hue circle (from HSV).
vtkLookupTable hueLut = new vtkLookupTable();
hueLut.SetTableRange (0, 2000);
hueLut.SetHueRange (0, 1);
hueLut.SetSaturationRange (1, 1);
hueLut.SetValueRange (1, 1);
hueLut.Build(); //effective built
// Finally, create a lookup table with a single hue but having a range
// in the saturation of the hue.
vtkLookupTable satLut = new vtkLookupTable();
satLut.SetTableRange (0, 2000);
satLut.SetHueRange (.6, .6);
satLut.SetSaturationRange (0, 1);
satLut.SetValueRange (1, 1);
satLut.Build(); //effective built
// Create the first of the three planes. The filter vtkImageMapToColors
// maps the data through the corresponding lookup table created above. The
// vtkImageActor is a type of vtkProp and conveniently displays an image on
// a single quadrilateral plane. It does this using texture mapping and as
// a result is quite fast. (Note: the input image has to be unsigned char
// values, which the vtkImageMapToColors produces.) Note also that by
// specifying the DisplayExtent, the pipeline requests data of this extent
// and the vtkImageMapToColors only processes a slice of data.
vtkImageMapToColors sagittalColors = new vtkImageMapToColors();
sagittalColors.SetInputConnection(reader.GetOutputPort());
sagittalColors.SetLookupTable(bwLut);
sagittalColors.Update();
vtkImageActor sagittal = new vtkImageActor();
sagittal.GetMapper().SetInputConnection(sagittalColors.GetOutputPort());
sagittal.SetDisplayExtent(128, 128, 0,255, 0,92);
sagittal.ForceOpaqueOn();
// Create the second (axial) plane of the three planes. We use the
// same approach as before except that the extent differs.
vtkImageMapToColors axialColors = new vtkImageMapToColors();
axialColors.SetInputConnection(reader.GetOutputPort());
axialColors.SetLookupTable(hueLut);
axialColors.Update();
vtkImageActor axial = new vtkImageActor();
axial.GetMapper().SetInputConnection(axialColors.GetOutputPort());
axial.SetDisplayExtent(0,255, 0,255, 46,46);
axial.ForceOpaqueOn();
// Create the third (coronal) plane of the three planes. We use
// the same approach as before except that the extent differs.
vtkImageMapToColors coronalColors = new vtkImageMapToColors();
coronalColors.SetInputConnection(reader.GetOutputPort());
coronalColors.SetLookupTable(satLut);
coronalColors.Update();
vtkImageActor coronal = new vtkImageActor();
coronal.GetMapper().SetInputConnection(coronalColors.GetOutputPort());
coronal.SetDisplayExtent(0,255, 128,128, 0,92);
coronal.ForceOpaqueOn();
// It is convenient to create an initial view of the data.
// The FocalPoint and Position form a vector direction.
// Later on (ResetCamera() method) this vector is used to position the camera to look at the data in this direction.
vtkCamera aCamera = new vtkCamera();
aCamera.SetViewUp (0, 0, -1);
aCamera.SetPosition (0, -1, 0);
aCamera.SetFocalPoint (0, 0, 0);
aCamera.ComputeViewPlaneNormal();
aCamera.Azimuth(30.0);
aCamera.Elevation(30.0);
// Actors are added to the renderer. An initial camera view is created.
// The Dolly() method moves the camera towards the FocalPoint, thereby enlarging the image.
ren.AddActor(outline);
ren.AddActor(sagittal);
ren.AddActor(axial);
ren.AddActor(coronal);
ren.AddActor(skin);
ren.AddActor(bone);
ren.SetActiveCamera(aCamera);
ren.ResetCamera ();
aCamera.Dolly(1.0);
// Turn off bone for this example.
bone.VisibilityOff();
// Set skin to semi-transparent.
skin.GetProperty().SetOpacity(0.5);
// Set a background color for the renderer and set the size of the
// render window (expressed in pixels).
ren.SetBackground(Bgcolor);
// Note that when camera movement occurs (as it does in the Dolly()
// method), the clipping planes often need adjusting. Clipping planes
// consist of two planes: near and far along the view direction. The
// near plane clips out objects in front of the plane; the far plane
// clips out objects behind the plane. This way only what is drawn
// between the planes is actually rendered.
ren.ResetCameraClippingRange ();
renWin.SetSize(300, 300);
renWin.Render();
iren.Initialize();
iren.Start();
}
}