HyperStreamline
Repository source: HyperStreamline
Description¶
This is an example of hyperstreamlines. The data is from a point load applied to semi-infinite domain. Compare this image to TensorEllipsoids that used tensor ellipsoids to visualize the same data. Notice that there is less clutter and more information available from the hyperstreamline visualization.
Info
See Figure 9-15 in Chapter 9 The VTK Textbook.
Other languages
See (Python), (PythonicAPI)
Question
If you have a question about this example, please use the VTK Discourse Forum
Code¶
HyperStreamline.cxx
#include <vtkActor.h>
#include <vtkCamera.h>
#include <vtkConeSource.h>
#include <vtkHyperStreamline.h>
#include <vtkImageData.h>
#include <vtkImageDataGeometryFilter.h>
#include <vtkLogLookupTable.h>
#include <vtkNamedColors.h>
#include <vtkNew.h>
#include <vtkOutlineFilter.h>
#include <vtkPointLoad.h>
#include <vtkPolyDataMapper.h>
#include <vtkProperty.h>
#include <vtkRenderWindow.h>
#include <vtkRenderWindowInteractor.h>
#include <vtkRenderer.h>
int main(int, char*[])
{
// Create the RenderWindow, Renderer and interactive renderer.
//
vtkNew<vtkNamedColors> colors;
vtkNew<vtkRenderer> ren1;
vtkNew<vtkRenderWindow> renWin;
renWin->SetMultiSamples(0);
renWin->AddRenderer(ren1);
vtkNew<vtkRenderWindowInteractor> iren;
iren->SetRenderWindow(renWin);
// set VTK_INTEGRATE_BOTH_DIRECTIONS 2
//
// Generate tensors.
vtkNew<vtkPointLoad> ptLoad;
ptLoad->SetLoadValue(100.0);
ptLoad->SetSampleDimensions(20, 20, 20);
ptLoad->ComputeEffectiveStressOn();
ptLoad->SetModelBounds(-10, 10, -10, 10, -10, 10);
ptLoad->Update();
// Generate hyperstreamlines.
vtkNew<vtkHyperStreamline> s1;
s1->SetInputData(ptLoad->GetOutput());
s1->SetStartPosition(9, 9, -9);
s1->IntegrateMinorEigenvector();
s1->SetMaximumPropagationDistance(18.0);
s1->SetIntegrationStepLength(0.1);
s1->SetStepLength(0.01);
s1->SetRadius(0.25);
s1->SetNumberOfSides(18);
s1->SetIntegrationDirectionToIntegrateBothDirections();
s1->Update();
// Map hyperstreamlines.
vtkNew<vtkLogLookupTable> lut;
lut->SetHueRange(.6667, 0.0);
vtkNew<vtkPolyDataMapper> s1Mapper;
s1Mapper->SetInputConnection(s1->GetOutputPort());
s1Mapper->SetLookupTable(lut);
s1Mapper->SetScalarRange(ptLoad->GetOutput()->GetScalarRange());
vtkNew<vtkActor> s1Actor;
s1Actor->SetMapper(s1Mapper);
vtkNew<vtkHyperStreamline> s2;
s2->SetInputData(ptLoad->GetOutput());
s2->SetStartPosition(-9, -9, -9);
s2->IntegrateMinorEigenvector();
s2->SetMaximumPropagationDistance(18.0);
s2->SetIntegrationStepLength(0.1);
s2->SetStepLength(0.01);
s2->SetRadius(0.25);
s2->SetNumberOfSides(18);
s2->SetIntegrationDirectionToIntegrateBothDirections();
s2->Update();
vtkNew<vtkPolyDataMapper> s2Mapper;
s2Mapper->SetInputConnection(s2->GetOutputPort());
s2Mapper->SetLookupTable(lut);
s2Mapper->SetScalarRange(ptLoad->GetOutput()->GetScalarRange());
vtkNew<vtkActor> s2Actor;
s2Actor->SetMapper(s2Mapper);
vtkNew<vtkHyperStreamline> s3;
s3->SetInputData(ptLoad->GetOutput());
s3->SetStartPosition(9, -9, -9);
s3->IntegrateMinorEigenvector();
s3->SetMaximumPropagationDistance(18.0);
s3->SetIntegrationStepLength(0.1);
s3->SetStepLength(0.01);
s3->SetRadius(0.25);
s3->SetNumberOfSides(18);
s3->SetIntegrationDirectionToIntegrateBothDirections();
s3->Update();
vtkNew<vtkPolyDataMapper> s3Mapper;
s3Mapper->SetInputConnection(s3->GetOutputPort());
s3Mapper->SetLookupTable(lut);
s3Mapper->SetScalarRange(ptLoad->GetOutput()->GetScalarRange());
vtkNew<vtkActor> s3Actor;
s3Actor->SetMapper(s3Mapper);
vtkNew<vtkHyperStreamline> s4;
s4->SetInputData(ptLoad->GetOutput());
s4->SetStartPosition(-9, 9, -9);
s4->IntegrateMinorEigenvector();
s4->SetMaximumPropagationDistance(18.0);
s4->SetIntegrationStepLength(0.1);
s4->SetStepLength(0.01);
s4->SetRadius(0.25);
s4->SetNumberOfSides(18);
s4->SetIntegrationDirectionToIntegrateBothDirections();
s4->Update();
vtkNew<vtkPolyDataMapper> s4Mapper;
s4Mapper->SetInputConnection(s4->GetOutputPort());
s4Mapper->SetLookupTable(lut);
s4Mapper->SetScalarRange(ptLoad->GetOutput()->GetScalarRange());
vtkNew<vtkActor> s4Actor;
s4Actor->SetMapper(s4Mapper);
// Plane for context.
//
vtkNew<vtkImageDataGeometryFilter> g;
g->SetInputData(ptLoad->GetOutput());
g->SetExtent(0, 100, 0, 100, 0, 0);
g->Update(); // for scalar range
vtkNew<vtkPolyDataMapper> gm;
gm->SetInputConnection(g->GetOutputPort());
gm->SetScalarRange(g->GetOutput()->GetScalarRange());
vtkNew<vtkActor> ga;
ga->SetMapper(gm);
// Create outline around data.
//
vtkNew<vtkOutlineFilter> outline;
outline->SetInputData(ptLoad->GetOutput());
vtkNew<vtkPolyDataMapper> outlineMapper;
outlineMapper->SetInputConnection(outline->GetOutputPort());
vtkNew<vtkActor> outlineActor;
outlineActor->SetMapper(outlineMapper);
outlineActor->GetProperty()->SetColor(colors->GetColor3d("Black").GetData());
// Create cone indicating application of load.
//
vtkNew<vtkConeSource> coneSrc;
coneSrc->SetRadius(0.5);
coneSrc->SetHeight(2);
vtkNew<vtkPolyDataMapper> coneMap;
coneMap->SetInputConnection(coneSrc->GetOutputPort());
vtkNew<vtkActor> coneActor;
coneActor->SetMapper(coneMap);
coneActor->SetPosition(0, 0, 11);
coneActor->RotateY(90);
coneActor->GetProperty()->SetColor(colors->GetColor3d("Tomato").GetData());
vtkNew<vtkCamera> camera;
camera->SetFocalPoint(0.113766, -1.13665, -1.01919);
camera->SetPosition(-29.4886, -63.1488, 26.5807);
camera->SetViewAngle(24.4617);
camera->SetViewUp(0.17138, 0.331163, 0.927879);
camera->SetClippingRange(1, 100);
ren1->AddActor(s1Actor);
ren1->AddActor(s2Actor);
ren1->AddActor(s3Actor);
ren1->AddActor(s4Actor);
ren1->AddActor(outlineActor);
ren1->AddActor(coneActor);
ren1->AddActor(ga);
ren1->SetBackground(colors->GetColor3d("SlateGray").GetData());
ren1->SetActiveCamera(camera);
renWin->SetSize(640, 480);
renWin->SetWindowName("HyperStreamline");
renWin->Render();
iren->Start();
return EXIT_SUCCESS;
}
CMakeLists.txt¶
cmake_minimum_required(VERSION 3.12 FATAL_ERROR)
project(HyperStreamline)
find_package(VTK COMPONENTS
CommonColor
CommonCore
CommonDataModel
FiltersGeneral
FiltersGeometry
FiltersModeling
FiltersSources
ImagingHybrid
InteractionStyle
RenderingContextOpenGL2
RenderingCore
RenderingFreeType
RenderingGL2PSOpenGL2
RenderingOpenGL2
)
if (NOT VTK_FOUND)
message(FATAL_ERROR "HyperStreamline: Unable to find the VTK build folder.")
endif()
# Prevent a "command line is too long" failure in Windows.
set(CMAKE_NINJA_FORCE_RESPONSE_FILE "ON" CACHE BOOL "Force Ninja to use response files.")
add_executable(HyperStreamline MACOSX_BUNDLE HyperStreamline.cxx )
target_link_libraries(HyperStreamline PRIVATE ${VTK_LIBRARIES}
)
# vtk_module_autoinit is needed
vtk_module_autoinit(
TARGETS HyperStreamline
MODULES ${VTK_LIBRARIES}
)
Download and Build HyperStreamline¶
Click here to download HyperStreamline and its CMakeLists.txt file. Once the tarball HyperStreamline.tar has been downloaded and extracted,
cd HyperStreamline/build
If VTK is installed:
cmake ..
If VTK is not installed but compiled on your system, you will need to specify the path to your VTK build:
cmake -DVTK_DIR:PATH=/home/me/vtk_build ..
Build the project:
make
and run it:
./HyperStreamline
WINDOWS USERS
Be sure to add the VTK bin directory to your path. This will resolve the VTK dll's at run time.