CarotidFlowGlyphs
Repository source: CarotidFlowGlyphs
Description¶
Visualizing blood flow in human carotid arteries. Cone glyphs indicate flow direction and magnitude.
Info
See Figure 6-43 in Chapter 6 the VTK Textbook.
Other languages
See (Python)
Question
If you have a question about this example, please use the VTK Discourse Forum
Code¶
CarotidFlowGlyphs.cxx
#include <vtkActor.h>
#include <vtkCamera.h>
#include <vtkConeSource.h>
#include <vtkContourFilter.h>
#include <vtkGlyph3D.h>
#include <vtkLookupTable.h>
#include <vtkMaskPoints.h>
#include <vtkNamedColors.h>
#include <vtkOutlineFilter.h>
#include <vtkPointData.h>
#include <vtkPolyDataMapper.h>
#include <vtkProperty.h>
#include <vtkRenderWindow.h>
#include <vtkRenderWindowInteractor.h>
#include <vtkRenderer.h>
#include <vtkStructuredPoints.h>
#include <vtkStructuredPointsReader.h>
#include <vtkThresholdPoints.h>
#include <iostream>
#include <string>
int main(int argc, char* argv[])
{
if (argc < 2)
{
std::cout << "Usage: " << argv[0] << " carotid.vtk" << std::endl;
return EXIT_FAILURE;
}
vtkSmartPointer<vtkNamedColors> colors =
vtkSmartPointer<vtkNamedColors>::New();
vtkSmartPointer<vtkRenderer> ren1 = vtkSmartPointer<vtkRenderer>::New();
vtkSmartPointer<vtkRenderWindow> renWin =
vtkSmartPointer<vtkRenderWindow>::New();
renWin->AddRenderer(ren1);
vtkSmartPointer<vtkRenderWindowInteractor> iren =
vtkSmartPointer<vtkRenderWindowInteractor>::New();
iren->SetRenderWindow(renWin);
// create pipeline
//
vtkSmartPointer<vtkStructuredPointsReader> reader =
vtkSmartPointer<vtkStructuredPointsReader>::New();
reader->SetFileName(argv[1]);
vtkSmartPointer<vtkThresholdPoints> threshold =
vtkSmartPointer<vtkThresholdPoints>::New();
threshold->SetInputConnection(reader->GetOutputPort());
threshold->ThresholdByUpper(200);
vtkSmartPointer<vtkMaskPoints> mask = vtkSmartPointer<vtkMaskPoints>::New();
mask->SetInputConnection(threshold->GetOutputPort());
mask->SetOnRatio(5);
vtkSmartPointer<vtkConeSource> cone = vtkSmartPointer<vtkConeSource>::New();
cone->SetResolution(11);
cone->SetHeight(1);
cone->SetRadius(0.25);
vtkSmartPointer<vtkGlyph3D> cones = vtkSmartPointer<vtkGlyph3D>::New();
cones->SetInputConnection(mask->GetOutputPort());
cones->SetSourceConnection(cone->GetOutputPort());
cones->SetScaleFactor(0.4);
cones->SetScaleModeToScaleByVector();
vtkSmartPointer<vtkLookupTable> lut = vtkSmartPointer<vtkLookupTable>::New();
lut->SetHueRange(.667, 0.0);
lut->Build();
double range[2];
cones->Update();
range[0] = cones->GetOutput()->GetPointData()->GetScalars()->GetRange()[0];
range[1] = cones->GetOutput()->GetPointData()->GetScalars()->GetRange()[1];
std::cout << "range: " << range[0] << ", " << range[1] << std::endl;
vtkSmartPointer<vtkPolyDataMapper> vectorMapper =
vtkSmartPointer<vtkPolyDataMapper>::New();
vectorMapper->SetInputConnection(cones->GetOutputPort());
vectorMapper->SetScalarRange(range[0], range[1]);
vectorMapper->SetLookupTable(lut);
vtkSmartPointer<vtkActor> vectorActor = vtkSmartPointer<vtkActor>::New();
vectorActor->SetMapper(vectorMapper);
// Contours of speed.
vtkSmartPointer<vtkContourFilter> iso =
vtkSmartPointer<vtkContourFilter>::New();
iso->SetInputConnection(reader->GetOutputPort());
iso->SetValue(0, 175);
vtkSmartPointer<vtkPolyDataMapper> isoMapper =
vtkSmartPointer<vtkPolyDataMapper>::New();
isoMapper->SetInputConnection(iso->GetOutputPort());
isoMapper->ScalarVisibilityOff();
vtkSmartPointer<vtkActor> isoActor = vtkSmartPointer<vtkActor>::New();
isoActor->SetMapper(isoMapper);
isoActor->GetProperty()->SetRepresentationToWireframe();
isoActor->GetProperty()->SetOpacity(0.25);
// Outline
vtkSmartPointer<vtkOutlineFilter> outline =
vtkSmartPointer<vtkOutlineFilter>::New();
outline->SetInputConnection(reader->GetOutputPort());
vtkSmartPointer<vtkPolyDataMapper> outlineMapper =
vtkSmartPointer<vtkPolyDataMapper>::New();
outlineMapper->SetInputConnection(outline->GetOutputPort());
vtkSmartPointer<vtkActor> outlineActor = vtkSmartPointer<vtkActor>::New();
outlineActor->SetMapper(outlineMapper);
outlineActor->GetProperty()->SetColor(colors->GetColor3d("Black").GetData());
// Add the actors to the renderer, set the background and size.
//
ren1->AddActor(outlineActor);
ren1->AddActor(vectorActor);
ren1->AddActor(isoActor);
ren1->SetBackground(colors->GetColor3d("Wheat").GetData());
renWin->SetSize(640, 480);
renWin->SetWindowName("CarotidFlowGlyphs");
vtkSmartPointer<vtkCamera> cam1 = vtkSmartPointer<vtkCamera>::New();
cam1->SetClippingRange(17.4043, 870.216);
cam1->SetFocalPoint(136.71, 104.025, 23);
cam1->SetPosition(204.747, 258.939, 63.7925);
cam1->SetViewUp(-0.102647, -0.210897, 0.972104);
cam1->Zoom(1.2);
ren1->SetActiveCamera(cam1);
// Render the image.
//
renWin->Render();
iren->Start();
return EXIT_SUCCESS;
}
CMakeLists.txt¶
cmake_minimum_required(VERSION 3.12 FATAL_ERROR)
project(CarotidFlowGlyphs)
find_package(VTK COMPONENTS
CommonColor
CommonCore
CommonDataModel
FiltersCore
FiltersModeling
FiltersSources
IOLegacy
InteractionStyle
RenderingContextOpenGL2
RenderingCore
RenderingFreeType
RenderingGL2PSOpenGL2
RenderingOpenGL2
)
if (NOT VTK_FOUND)
message(FATAL_ERROR "CarotidFlowGlyphs: Unable to find the VTK build folder.")
endif()
# Prevent a "command line is too long" failure in Windows.
set(CMAKE_NINJA_FORCE_RESPONSE_FILE "ON" CACHE BOOL "Force Ninja to use response files.")
add_executable(CarotidFlowGlyphs MACOSX_BUNDLE CarotidFlowGlyphs.cxx )
target_link_libraries(CarotidFlowGlyphs PRIVATE ${VTK_LIBRARIES}
)
# vtk_module_autoinit is needed
vtk_module_autoinit(
TARGETS CarotidFlowGlyphs
MODULES ${VTK_LIBRARIES}
)
Download and Build CarotidFlowGlyphs¶
Click here to download CarotidFlowGlyphs and its CMakeLists.txt file. Once the tarball CarotidFlowGlyphs.tar has been downloaded and extracted,
cd CarotidFlowGlyphs/build
If VTK is installed:
cmake ..
If VTK is not installed but compiled on your system, you will need to specify the path to your VTK build:
cmake -DVTK_DIR:PATH=/home/me/vtk_build ..
Build the project:
make
and run it:
./CarotidFlowGlyphs
WINDOWS USERS
Be sure to add the VTK bin directory to your path. This will resolve the VTK dll's at run time.