PCADemo
Repository source: PCADemo
Other languages
See (PythonicAPI)
Question
If you have a question about this example, please use the VTK Discourse Forum
Code¶
PCADemo.cxx
#include <vtkActor.h>
#include <vtkBoxMuellerRandomSequence.h>
#include <vtkDoubleArray.h>
#include <vtkGlyph3DMapper.h>
#include <vtkLine.h>
#include <vtkLineSource.h>
#include <vtkNamedColors.h>
#include <vtkNew.h>
#include <vtkPCAStatistics.h>
#include <vtkPoints.h>
#include <vtkPolyData.h>
#include <vtkPolyDataMapper.h>
#include <vtkProperty.h>
#include <vtkRenderWindow.h>
#include <vtkRenderWindowInteractor.h>
#include <vtkRenderer.h>
#include <vtkSmartPointer.h>
#include <vtkSphereSource.h>
#include <vtkTable.h>
#include <vtkTransform.h>
#include <vtkTransformPolyDataFilter.h>
#include <vtkVertexGlyphFilter.h>
namespace {
/**
* Convert points to glyphs.
*
* @param points - The points to glyph
* @param scale - The scale, used to determine the size of the glyph
* representing the point, expressed as a fraction of the largest side of the
* bounding box surrounding the points. e.g. 0.05
*
* @return The actor.
*/
vtkSmartPointer<vtkActor> PointToGlyph(vtkPoints* points, double const& scale);
} // namespace
int main(int, char*[])
{
vtkNew<vtkBoxMuellerRandomSequence> randomSequence;
vtkNew<vtkPoints> points;
for (unsigned int i = 0; i < 200; i++)
{
auto x = randomSequence->GetScaledValue(0, 2);
randomSequence->Next();
auto y = randomSequence->GetScaledValue(0, 5);
randomSequence->Next();
points->InsertNextPoint(x, y, 0);
}
vtkNew<vtkPolyData> polydata;
polydata->SetPoints(points);
vtkNew<vtkTransform> transform;
transform->RotateZ(30);
vtkNew<vtkTransformPolyDataFilter> transformFilter;
transformFilter->SetTransform(transform);
transformFilter->SetInputData(polydata);
transformFilter->Update();
// These would be all of your "x" values.
vtkNew<vtkDoubleArray> xArray;
xArray->SetNumberOfComponents(1);
xArray->SetName("x");
// These would be all of your "y" values.
vtkNew<vtkDoubleArray> yArray;
yArray->SetNumberOfComponents(1);
yArray->SetName("y");
for (vtkIdType i = 0; i < polydata->GetNumberOfPoints(); i++)
{
double p[3];
transformFilter->GetOutput()->GetPoint(i, p);
xArray->InsertNextValue(p[0]);
yArray->InsertNextValue(p[1]);
}
vtkNew<vtkTable> datasetTable;
datasetTable->AddColumn(xArray);
datasetTable->AddColumn(yArray);
vtkNew<vtkPCAStatistics> pcaStatistics;
pcaStatistics->SetInputData(vtkStatisticsAlgorithm::INPUT_DATA, datasetTable);
pcaStatistics->SetColumnStatus("x", 1);
pcaStatistics->SetColumnStatus("y", 1);
pcaStatistics->RequestSelectedColumns();
pcaStatistics->SetDeriveOption(true);
pcaStatistics->Update();
///////// Eigenvalues ////////////
vtkNew<vtkDoubleArray> eigenvalues;
pcaStatistics->GetEigenvalues(eigenvalues);
for (vtkIdType i = 0; i < eigenvalues->GetNumberOfTuples(); i++)
{
std::cout << "Eigenvalue " << i << " = " << std::fixed << std::setw(9)
<< std::setprecision(6) << eigenvalues->GetValue(i) << std::endl;
}
///////// Eigenvectors ////////////
vtkNew<vtkDoubleArray> eigenvectors;
pcaStatistics->GetEigenvectors(eigenvectors);
for (vtkIdType i = 0; i < eigenvectors->GetNumberOfTuples(); i++)
{
std::cout << "Eigenvector " << i << " = ";
double* evec = new double[eigenvectors->GetNumberOfComponents()];
eigenvectors->GetTuple(i, evec);
for (vtkIdType j = 0; j < eigenvectors->GetNumberOfComponents(); j++)
{
if (j == 0)
std::cout << "(";
if (j < eigenvectors->GetNumberOfComponents() - 1)
{
std::cout << std::fixed << std::setw(9) << std::setprecision(6)
<< evec[j] << ", ";
}
else
{
std::cout << std::fixed << std::setw(9) << std::setprecision(6)
<< evec[j] << ")";
}
vtkNew<vtkDoubleArray> eigenvectorSingle;
pcaStatistics->GetEigenvector(i, eigenvectorSingle);
}
delete[] evec;
std::cout << std::endl;
}
vtkNew<vtkDoubleArray> evec1;
pcaStatistics->GetEigenvector(0, evec1);
vtkNew<vtkDoubleArray> evec2;
pcaStatistics->GetEigenvector(1, evec2);
double scale = 3.0;
vtkNew<vtkLineSource> vector1Source;
vector1Source->SetPoint1(0, 0, 0);
vector1Source->SetPoint2(scale * evec1->GetValue(0),
scale * evec1->GetValue(1), 0);
vtkNew<vtkPolyDataMapper> vec1Mapper;
vec1Mapper->SetInputConnection(vector1Source->GetOutputPort());
vtkNew<vtkNamedColors> colors;
vtkNew<vtkActor> vector1Actor;
vector1Actor->SetMapper(vec1Mapper);
vector1Actor->GetProperty()->SetColor(
colors->GetColor3d("LimeGreen").GetData());
vector1Actor->GetProperty()->SetLineWidth(3);
vtkNew<vtkLineSource> vector2Source;
vector2Source->SetPoint1(0, 0, 0);
vector2Source->SetPoint2(scale * evec2->GetValue(0),
scale * evec2->GetValue(1), 0);
vtkNew<vtkPolyDataMapper> vec2Mapper;
vec2Mapper->SetInputConnection(vector2Source->GetOutputPort());
vtkNew<vtkActor> vector2Actor;
vector2Actor->SetMapper(vec2Mapper);
vector2Actor->GetProperty()->SetColor(
colors->GetColor3d("Crimson").GetData());
vector2Actor->GetProperty()->SetLineWidth(3);
// Project all of the points onto the eigenvector with
// the largest eigenvalues.
double p0[3];
p0[0] = -100 * evec1->GetValue(0);
p0[1] = -100 * evec1->GetValue(1);
p0[2] = 0;
double p1[3];
p1[0] = 100 * evec1->GetValue(0);
p1[1] = 100 * evec1->GetValue(1);
p1[2] = 0;
vtkNew<vtkPoints> projectedPoints;
for (vtkIdType i = 0; i < polydata->GetNumberOfPoints(); i++)
{
double p[3];
transformFilter->GetOutput()->GetPoint(i, p);
double t;
double closestPoint[3];
vtkLine::DistanceToLine(p, p0, p1, t, closestPoint);
// double newP[3];
// double v[3];
// vtkMath::Subtract(p1, p0, v);
// vtkMath::Normalize(v);
// vtkMath::MultiplyScalar(v, t);
// vtkMath::Add(p0, v, newP);
projectedPoints->InsertNextPoint(t, 0, 0);
}
vtkNew<vtkPolyData> projectedPolyData;
projectedPolyData->SetPoints(projectedPoints);
vtkNew<vtkVertexGlyphFilter> projectedGlyphFilter;
projectedGlyphFilter->SetInputData(projectedPolyData);
projectedGlyphFilter->Update();
vtkNew<vtkPolyDataMapper> projectedMapper;
projectedMapper->SetInputConnection(projectedGlyphFilter->GetOutputPort());
vtkNew<vtkActor> projectedActor;
projectedActor->SetMapper(projectedMapper);
projectedActor->GetProperty()->SetPointSize(2);
projectedActor->GetProperty()->SetColor(colors->GetColor3d("Gold").GetData());
vtkNew<vtkVertexGlyphFilter> glyphFilter;
glyphFilter->SetInputConnection(transformFilter->GetOutputPort());
glyphFilter->Update();
vtkNew<vtkPolyDataMapper> originalMapper;
originalMapper->SetInputConnection(glyphFilter->GetOutputPort());
vtkNew<vtkActor> originalActor;
originalActor->SetMapper(originalMapper);
originalActor->GetProperty()->SetPointSize(3);
originalActor->GetProperty()->SetColor(colors->GetColor3d("Blue").GetData());
// Map the points to spheres
auto sphereActor =
PointToGlyph(transformFilter->GetOutput()->GetPoints(), 0.007);
sphereActor->GetProperty()->SetColor(colors->GetColor3d("Blue").GetData());
// Set up the render window, interactor and renderers.
vtkNew<vtkRenderWindow> renderWindow;
renderWindow->SetSize(600, 300);
renderWindow->SetWindowName("PCADemo");
vtkNew<vtkRenderWindowInteractor> interactor;
interactor->SetRenderWindow(renderWindow);
// Define viewport ranges
// (xmin, ymin, xmax, ymax)
double leftViewport[4] = {0.0, 0.0, 0.5, 1.0};
double rightViewport[4] = {0.5, 0.0, 1.0, 1.0};
vtkNew<vtkRenderer> leftRenderer;
renderWindow->AddRenderer(leftRenderer);
leftRenderer->SetViewport(leftViewport);
leftRenderer->SetBackground(colors->GetColor3d("Burlywood").GetData());
vtkNew<vtkRenderer> rightRenderer;
renderWindow->AddRenderer(rightRenderer);
rightRenderer->SetViewport(rightViewport);
rightRenderer->SetBackground(colors->GetColor3d("SlateGray").GetData());
// leftRenderer->AddActor(originalActor);
leftRenderer->AddActor(sphereActor);
leftRenderer->AddActor(vector1Actor);
leftRenderer->AddActor(vector2Actor);
rightRenderer->AddActor(projectedActor);
leftRenderer->ResetCamera();
rightRenderer->ResetCamera();
renderWindow->Render();
interactor->Start();
return EXIT_SUCCESS;
}
namespace {
vtkSmartPointer<vtkActor> PointToGlyph(vtkPoints* points, double const& scale)
{
auto bounds = points->GetBounds();
double maxLen = 0;
for (int i = 1; i < 3; ++i)
{
maxLen = std::max(bounds[i + 1] - bounds[i], maxLen);
}
vtkNew<vtkSphereSource> sphereSource;
sphereSource->SetRadius(scale * maxLen);
vtkNew<vtkPolyData> pd;
pd->SetPoints(points);
vtkNew<vtkGlyph3DMapper> mapper;
mapper->SetInputData(pd);
mapper->SetSourceConnection(sphereSource->GetOutputPort());
mapper->ScalarVisibilityOff();
mapper->ScalingOff();
vtkNew<vtkActor> actor;
actor->SetMapper(mapper);
return actor;
}
} // namespace
CMakeLists.txt¶
cmake_minimum_required(VERSION 3.12 FATAL_ERROR)
project(PCADemo)
find_package(VTK COMPONENTS
CommonColor
CommonCore
CommonDataModel
CommonTransforms
FiltersGeneral
FiltersSources
FiltersStatistics
InteractionStyle
RenderingContextOpenGL2
RenderingCore
RenderingFreeType
RenderingGL2PSOpenGL2
RenderingOpenGL2
)
if (NOT VTK_FOUND)
message(FATAL_ERROR "PCADemo: Unable to find the VTK build folder.")
endif()
# Prevent a "command line is too long" failure in Windows.
set(CMAKE_NINJA_FORCE_RESPONSE_FILE "ON" CACHE BOOL "Force Ninja to use response files.")
add_executable(PCADemo MACOSX_BUNDLE PCADemo.cxx )
target_link_libraries(PCADemo PRIVATE ${VTK_LIBRARIES}
)
# vtk_module_autoinit is needed
vtk_module_autoinit(
TARGETS PCADemo
MODULES ${VTK_LIBRARIES}
)
Download and Build PCADemo¶
Click here to download PCADemo and its CMakeLists.txt file. Once the tarball PCADemo.tar has been downloaded and extracted,
cd PCADemo/build
If VTK is installed:
cmake ..
If VTK is not installed but compiled on your system, you will need to specify the path to your VTK build:
cmake -DVTK_DIR:PATH=/home/me/vtk_build ..
Build the project:
make
and run it:
./PCADemo
WINDOWS USERS
Be sure to add the VTK bin directory to your path. This will resolve the VTK dll's at run time.