Skip to content

Tutorial Step4

Repository source: Tutorial_Step4

Description

This example demonstrates the creation of multiple actors and the manipulation of their properties and transformations.

Other languages

See (Python)

Question

If you have a question about this example, please use the VTK Discourse Forum

Code

Tutorial_Step4.cxx

/*=========================================================================

  Program:   Visualization Toolkit
  Module:    Cone4.cxx

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/

// First include the required header files for the VTK classes we are using.
#include <vtkActor.h>
#include <vtkCamera.h>
#include <vtkConeSource.h>
#include <vtkNamedColors.h>
#include <vtkNew.h>
#include <vtkPolyDataMapper.h>
#include <vtkProperty.h>
#include <vtkRenderWindow.h>
#include <vtkRenderer.h>

int main(int, char*[])
{
  vtkNew<vtkNamedColors> colors;

  //
  // Next we create an instance of vtkConeSource and set some of its
  // properties. The instance of vtkConeSource "cone" is part of a
  // visualization pipeline (it is a source process object); it produces data
  // (output type is vtkPolyData) which other filters may process.
  //
  vtkNew<vtkConeSource> cone;
  cone->SetHeight(3.0);
  cone->SetRadius(1.0);
  cone->SetResolution(10);

  //
  // In this example we terminate the pipeline with a mapper process object.
  // (Intermediate filters such as vtkShrinkPolyData could be inserted in
  // between the source and the mapper.)  We create an instance of
  // vtkPolyDataMapper to map the polygonal data into graphics primitives. We
  // connect the output of the cone source to the input of this mapper.
  //
  vtkNew<vtkPolyDataMapper> coneMapper;
  coneMapper->SetInputConnection(cone->GetOutputPort());

  //
  // Create an actor to represent the first cone. The actor's properties are
  // modified to give it different surface properties. By default, an actor
  // is create with a property so the GetProperty() method can be used.
  //
  vtkNew<vtkActor> coneActor;
  coneActor->SetMapper(coneMapper);
  coneActor->GetProperty()->SetColor(0.2, 0.63, 0.79);
  coneActor->GetProperty()->SetDiffuse(0.7);
  coneActor->GetProperty()->SetSpecular(0.4);
  coneActor->GetProperty()->SetSpecularPower(20);

  //
  // Create a property and directly manipulate it. Assign it to the
  // second actor.
  //
  vtkNew<vtkProperty> property;
  property->SetColor(colors->GetColor3d("Tomato").GetData());
  property->SetDiffuse(0.7);
  property->SetSpecular(0.4);
  property->SetSpecularPower(20);

  //
  // Create a second actor and a property. The property is directly
  // manipulated and then assigned to the actor. In this way, a single
  // property can be shared among many actors. Note also that we use the
  // same mapper as the first actor did. This way we avoid duplicating
  // geometry, which may save lots of memory if the geometry is large.
  vtkNew<vtkActor> coneActor2;
  coneActor2->SetMapper(coneMapper);
  coneActor2->GetProperty()->SetColor(
      colors->GetColor3d("LightSeaGreen").GetData());
  coneActor2->SetProperty(property);
  coneActor2->SetPosition(0, 2, 0);

  //
  // Create the Renderer and assign actors to it. A renderer is like a
  // viewport. It is part or all of a window on the screen and it is
  // responsible for drawing the actors it has.  We also set the background
  // color here.
  //
  vtkNew<vtkRenderer> ren1;
  ren1->AddActor(coneActor);
  ren1->AddActor(coneActor2);
  ren1->SetBackground(colors->GetColor3d("CornflowerBlue").GetData());

  //
  // Finally we create the render window which will show up on the screen.
  // We put our renderer into the render window using AddRenderer. We also
  // set the size to be 300 pixels by 300.
  //
  vtkNew<vtkRenderWindow> renWin;
  renWin->AddRenderer(ren1);
  renWin->SetSize(300, 300);
  renWin->SetWindowName("Tutorial_Step4");

  //
  // Now we loop over 360 degrees and render the cones each time.
  //
  for (int i = 0; i < 360; ++i)
  {
    // render the image
    renWin->Render();
    // rotate the active camera by one degree
    ren1->GetActiveCamera()->Azimuth(1);
  }

  return EXIT_SUCCESS;
}

CMakeLists.txt

cmake_minimum_required(VERSION 3.12 FATAL_ERROR)

project(Tutorial_Step4)

find_package(VTK COMPONENTS 
  CommonColor
  CommonCore
  FiltersSources
  InteractionStyle
  RenderingContextOpenGL2
  RenderingCore
  RenderingFreeType
  RenderingGL2PSOpenGL2
  RenderingOpenGL2
)

if (NOT VTK_FOUND)
  message(FATAL_ERROR "Tutorial_Step4: Unable to find the VTK build folder.")
endif()

# Prevent a "command line is too long" failure in Windows.
set(CMAKE_NINJA_FORCE_RESPONSE_FILE "ON" CACHE BOOL "Force Ninja to use response files.")
add_executable(Tutorial_Step4 MACOSX_BUNDLE Tutorial_Step4.cxx )
  target_link_libraries(Tutorial_Step4 PRIVATE ${VTK_LIBRARIES}
)
# vtk_module_autoinit is needed
vtk_module_autoinit(
  TARGETS Tutorial_Step4
  MODULES ${VTK_LIBRARIES}
)

Download and Build Tutorial_Step4

Click here to download Tutorial_Step4 and its CMakeLists.txt file. Once the tarball Tutorial_Step4.tar has been downloaded and extracted,

cd Tutorial_Step4/build

If VTK is installed:

cmake ..

If VTK is not installed but compiled on your system, you will need to specify the path to your VTK build:

cmake -DVTK_DIR:PATH=/home/me/vtk_build ..

Build the project:

make

and run it:

./Tutorial_Step4

WINDOWS USERS

Be sure to add the VTK bin directory to your path. This will resolve the VTK dll's at run time.