Tutorial Step3
Repository source: Tutorial_Step3
Description¶
This example demonstrates how to use multiple renderers within a render window.
Other languages
See (Python)
Question
If you have a question about this example, please use the VTK Discourse Forum
Code¶
Tutorial_Step3.cxx
/*=========================================================================
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
// First include the required header files for the VTK classes we are using.
#include <vtkActor.h>
#include <vtkCamera.h>
#include <vtkConeSource.h>
#include <vtkNamedColors.h>
#include <vtkNew.h>
#include <vtkPolyDataMapper.h>
#include <vtkProperty.h>
#include <vtkRenderWindow.h>
#include <vtkRenderer.h>
int main(int, char*[])
{
vtkNew<vtkNamedColors> colors;
//
// Next we create an instance of vtkConeSource and set some of its
// properties. The instance of vtkConeSource "cone" is part of a
// visualization pipeline (it is a source process object); it produces data
// (output type is vtkPolyData) which other filters may process.
//
vtkNew<vtkConeSource> cone;
cone->SetHeight(3.0);
cone->SetRadius(1.0);
cone->SetResolution(10);
//
// In this example we terminate the pipeline with a mapper process object.
// (Intermediate filters such as vtkShrinkPolyData could be inserted in
// between the source and the mapper.) We create an instance of
// vtkPolyDataMapper to map the polygonal data into graphics primitives. We
// connect the output of the cone source to the input of this mapper.
//
vtkNew<vtkPolyDataMapper> coneMapper;
coneMapper->SetInputConnection(cone->GetOutputPort());
//
// Create an actor to represent the cone. The actor orchestrates rendering
// of the mapper's graphics primitives. An actor also refers to properties
// via a vtkProperty instance, and includes an internal transformation
// matrix. We set this actor's mapper to be coneMapper which we created
// above.
//
vtkNew<vtkActor> coneActor;
coneActor->SetMapper(coneMapper);
coneActor->GetProperty()->SetColor(colors->GetColor3d("MistyRose").GetData());
//
// Create two renderers and assign actors to them. A renderer renders into
// a viewport within the vtkRenderWindow. It is part or all of a window on
// the screen and it is responsible for drawing the actors it has. We also
// set the background color here. In this example we are adding the same
// actor to two different renderers; it is okay to add different actors to
// different renderers as well.
//
vtkNew<vtkRenderer> ren1;
ren1->AddActor(coneActor);
ren1->SetBackground(colors->GetColor3d("RoyalBlue").GetData());
ren1->SetViewport(0.0, 0.0, 0.5, 1.0);
vtkNew<vtkRenderer> ren2;
ren2->AddActor(coneActor);
ren2->SetBackground(colors->GetColor3d("DodgerBlue").GetData());
ren2->SetViewport(0.5, 0.0, 1.0, 1.0);
//
// Finally we create the render window which will show up on the screen.
// We put our renderer into the render window using AddRenderer. We also
// set the size to be 300 pixels by 300.
//
vtkNew<vtkRenderWindow> renWin;
renWin->AddRenderer(ren1);
renWin->AddRenderer(ren2);
renWin->SetSize(600, 300);
renWin->SetWindowName("Tutorial_Step3");
//
// Make one view 90 degrees from other.
//
ren1->ResetCamera();
ren1->GetActiveCamera()->Azimuth(90);
//
// Now we loop over 360 degrees and render the cones each time.
//
for (int i = 0; i < 360; ++i)
{
// render the image
renWin->Render();
// rotate the active camera by one degree
ren1->GetActiveCamera()->Azimuth(1);
ren2->GetActiveCamera()->Azimuth(1);
}
return EXIT_SUCCESS;
}
CMakeLists.txt¶
cmake_minimum_required(VERSION 3.12 FATAL_ERROR)
project(Tutorial_Step3)
find_package(VTK COMPONENTS
CommonColor
CommonCore
FiltersSources
InteractionStyle
RenderingContextOpenGL2
RenderingCore
RenderingFreeType
RenderingGL2PSOpenGL2
RenderingOpenGL2
)
if (NOT VTK_FOUND)
message(FATAL_ERROR "Tutorial_Step3: Unable to find the VTK build folder.")
endif()
# Prevent a "command line is too long" failure in Windows.
set(CMAKE_NINJA_FORCE_RESPONSE_FILE "ON" CACHE BOOL "Force Ninja to use response files.")
add_executable(Tutorial_Step3 MACOSX_BUNDLE Tutorial_Step3.cxx )
target_link_libraries(Tutorial_Step3 PRIVATE ${VTK_LIBRARIES}
)
# vtk_module_autoinit is needed
vtk_module_autoinit(
TARGETS Tutorial_Step3
MODULES ${VTK_LIBRARIES}
)
Download and Build Tutorial_Step3¶
Click here to download Tutorial_Step3 and its CMakeLists.txt file. Once the tarball Tutorial_Step3.tar has been downloaded and extracted,
cd Tutorial_Step3/build
If VTK is installed:
cmake ..
If VTK is not installed but compiled on your system, you will need to specify the path to your VTK build:
cmake -DVTK_DIR:PATH=/home/me/vtk_build ..
Build the project:
make
and run it:
./Tutorial_Step3
WINDOWS USERS
Be sure to add the VTK bin directory to your path. This will resolve the VTK dll's at run time.