WalkCow
Repository source: WalkCow
Description¶
This generates Fig. 3-32: The cow "walking" around the global origin; Fig. 3-33: The cow rotating about a vector passing through her nose. (a) With origin (0,0,0). (b) With origin at (6.1,1.3,.02). found in VTKTextbook.
The example allows an optional second argument that selects the figure to be generated. A 0 generates Fig 3-32, 1 generates Fig 3-33a and 2 generates Fig 3-33b.
Info
See Figure 3-32 in Chapter 3 the VTK Textbook.
Other languages
See (Python)
Question
If you have a question about this example, please use the VTK Discourse Forum
Code¶
WalkCow.cxx
// Translated from walkCow.tcl
#include <vtkActor.h>
#include <vtkAxes.h>
#include <vtkBYUReader.h>
#include <vtkCallbackCommand.h>
#include <vtkCamera.h>
#include <vtkNamedColors.h>
#include <vtkNew.h>
#include <vtkPNGWriter.h>
#include <vtkPolyDataMapper.h>
#include <vtkProperty.h>
#include <vtkRenderWindow.h>
#include <vtkRenderWindowInteractor.h>
#include <vtkRenderer.h>
#include <vtkTransform.h>
#include <vtkVersionMacros.h>
#include <vtkWindowToImageFilter.h>
#include <array>
namespace {
/*
These Rotate* and Walk functions create a scene where multiple
views of the object exist.
They all operate in a similar manner, namely:
1) Accept vtkActor, vtkRenderer, vtkRenderWindow as parameters.
2) Position the object.
3) Position the observer with the focal point sent to the centre
of the object.
4) Render and set EraseOff() in the render window.
Note that:
EraseOff() has to be called after a Render() call
to work in the desired way.
5) Then rotate or walk the object around the scene.
6) Write out the scene using Screenshot().
6) Set EraseOff() in the render window.
7) Reset the object position.
*/
void Rotate_X(vtkActor* cowActor, vtkRenderer* ren, vtkRenderWindow* renWin);
void Rotate_Y(vtkActor* cowActor, vtkRenderer* ren, vtkRenderWindow* renWin);
void Rotate_Z(vtkActor* cowActor, vtkRenderer* ren, vtkRenderWindow* renWin);
void Rotate_XY(vtkActor* cowActor, vtkRenderer* ren, vtkRenderWindow* renWin);
void Rotate_V_0(vtkActor* cowActor, vtkRenderer* ren, vtkRenderWindow* renWin);
void Rotate_V_V(vtkActor* cowActor, vtkRenderer* ren, vtkRenderWindow* renWin);
void Walk(vtkActor* cowActor, vtkRenderer* ren, vtkRenderWindow* renWin);
/*
// Used to estimate positions similar to the book illustrations.
static void CameraModifiedCallback(vtkObject* caller,
long unsigned int vtkNotUsed(eventId),
void* vtkNotUsed(clientData),
void* vtkNotUsed(callData));
*/
// Save a screenshot.
void Screenshot(std::string const& fileName, vtkRenderWindow* renWin);
} // namespace
int main(int argc, char* argv[])
{
int figure = 0;
if (argc < 2)
{
std::cout << "Usage: " << argv[0] << " filename [figure]" << std::endl;
std::cout << "where: filename is the file cow.g" << std::endl;
std::cout << " figure is 0, 1, or 2, default 0" << std::endl;
std::cout
<< "Options 0, 1 and 2 are provided to let you generate"
" approximations to the following figures:\n Figure 3-32,"
" Figure 3-33a and Figure 3-33b in Chapter 3 of the VTK Textbook."
<< std::endl;
return EXIT_FAILURE;
}
std::string fileName = argv[1];
if (argc == 3)
{
figure = std::abs(atoi(argv[2]));
figure = (figure > 2) ? 0 : figure;
}
vtkNew<vtkNamedColors> colors;
// Set the background color.
std::array<unsigned char, 4> bkg1{{60, 93, 144, 255}};
colors->SetColor("BkgColor1", bkg1.data());
std::array<unsigned char, 4> bkg2{{26, 51, 102, 255}};
colors->SetColor("BkgColor2", bkg2.data());
vtkNew<vtkRenderer> ren;
vtkNew<vtkRenderWindow> renWin;
renWin->AddRenderer(ren);
vtkNew<vtkRenderWindowInteractor> iren;
iren->SetRenderWindow(renWin);
// The cow pipeline.
vtkNew<vtkBYUReader> cow;
cow->SetGeometryFileName(fileName.c_str());
cow->Update();
vtkNew<vtkPolyDataMapper> cowMapper;
cowMapper->SetInputConnection(cow->GetOutputPort());
cowMapper->ScalarVisibilityOff();
vtkNew<vtkActor> cowActor;
cowActor->SetMapper(cowMapper);
cowActor->GetProperty()->SetColor(colors->GetColor3d("Wheat").GetData());
ren->AddActor(cowActor);
// Axes pipeline.
vtkNew<vtkAxes> cowAxesSource;
cowAxesSource->SetScaleFactor(10.0);
cowAxesSource->SetOrigin(0, 0, 0);
vtkNew<vtkPolyDataMapper> cowAxesMapper;
cowAxesMapper->SetInputConnection(cowAxesSource->GetOutputPort());
vtkNew<vtkActor> cowAxes;
cowAxes->SetMapper(cowAxesMapper);
cowAxes->VisibilityOff();
ren->AddActor(cowAxes);
ren->SetBackground(colors->GetColor3d("BkgColor1").GetData());
renWin->SetSize(600, 480);
renWin->SetWindowName("WalkCow");
iren->Initialize();
cowAxes->VisibilityOn();
renWin->Render();
// Activate this if you want to see the Position and Focal point.
// vtkNew<vtkCallbackCommand> modifiedCallback;
// modifiedCallback->SetCallback(CameraModifiedCallback);
// ren->GetActiveCamera()->AddObserver(vtkCommand::ModifiedEvent,
// modifiedCallback);
// These four rotations use the same camera position.
Rotate_X(cowActor, ren, renWin);
Rotate_Y(cowActor, ren, renWin);
Rotate_Z(cowActor, ren, renWin);
Rotate_XY(cowActor, ren, renWin);
ren->SetBackground(colors->GetColor3d("BkgColor2").GetData());
switch (figure)
{
default:
case 0:
Rotate_V_0(cowActor, ren, renWin);
Rotate_V_V(cowActor, ren, renWin);
// Walk() needs to go after Rotate_V_0() or Rotate_V_V().
Walk(cowActor, ren, renWin);
break;
case 1:
Rotate_V_0(cowActor, ren, renWin);
break;
case 2:
Rotate_V_V(cowActor, ren, renWin);
break;
}
// Interact with data.
// Keep the last rendered image.
renWin->EraseOff();
iren->Start();
return EXIT_SUCCESS;
}
namespace {
void Rotate_X(vtkActor* cowActor, vtkRenderer* ren, vtkRenderWindow* renWin)
{
// Six rotations about the x axis.
ren->ResetCamera();
ren->ResetCameraClippingRange();
cowActor->SetOrientation(0.0, 0.0, 0.0);
cowActor->SetOrigin(0.0, 0.0, 0);
cowActor->SetPosition(0, 0, 0);
// Get the focal point.
const double* bounds = cowActor->GetBounds();
double fp[3];
for (int i = 0; i < 3; ++i)
{
fp[i] = (bounds[i * 2 + 1] + bounds[i * 2]) / 2.0;
}
// This closely matches the original illustration.
ren->GetActiveCamera()->SetPosition(2, 25, 0);
ren->GetActiveCamera()->SetFocalPoint(fp);
ren->GetActiveCamera()->SetViewUp(0, 0, -1);
ren->ResetCameraClippingRange();
renWin->Render();
renWin->Render();
renWin->EraseOff();
for (int idx = 0; idx < 6; idx++)
{
cowActor->RotateX(60);
renWin->Render();
renWin->Render();
}
Screenshot("Fig3-31a.png", renWin);
renWin->EraseOn();
}
void Rotate_Y(vtkActor* cowActor, vtkRenderer* ren, vtkRenderWindow* renWin)
{
// Six rotations about the y axis.
ren->ResetCamera();
ren->ResetCameraClippingRange();
cowActor->SetOrientation(0.0, 0.0, 0.0);
cowActor->SetOrigin(0.0, 0.0, 0);
cowActor->SetPosition(0, 0, 0);
// Get the focal point.
const double* bounds = cowActor->GetBounds();
double fp[3];
for (int i = 0; i < 3; ++i)
{
fp[i] = (bounds[i * 2 + 1] + bounds[i * 2]) / 2.0;
}
// This closely matches the original illustration.
ren->GetActiveCamera()->SetPosition(2, 0, 25);
ren->GetActiveCamera()->SetFocalPoint(fp);
ren->GetActiveCamera()->SetViewUp(0, 1, 0);
ren->ResetCameraClippingRange();
renWin->Render();
renWin->Render();
renWin->EraseOff();
for (int idx = 0; idx < 6; idx++)
{
cowActor->RotateY(60);
renWin->Render();
renWin->Render();
}
Screenshot("Fig3-31b.png", renWin);
renWin->EraseOn();
}
void Rotate_Z(vtkActor* cowActor, vtkRenderer* ren, vtkRenderWindow* renWin)
{
// Six rotations about the z axis.
ren->ResetCamera();
ren->ResetCameraClippingRange();
cowActor->SetOrientation(0.0, 0.0, 0.0);
cowActor->SetOrigin(0.0, 0.0, 0);
cowActor->SetPosition(0, 0, 0);
// Get the focal point.
const double* bounds = cowActor->GetBounds();
double fp[3];
for (int i = 0; i < 3; ++i)
{
fp[i] = (bounds[i * 2 + 1] + bounds[i * 2]) / 2.0;
}
// This closely matches the original illustration.
ren->GetActiveCamera()->SetPosition(2, 0, 25);
ren->GetActiveCamera()->SetFocalPoint(fp);
ren->GetActiveCamera()->SetViewUp(0, 1, 0);
ren->ResetCameraClippingRange();
renWin->Render();
renWin->Render();
renWin->EraseOff();
for (int idx = 0; idx < 6; idx++)
{
cowActor->RotateZ(60);
renWin->Render();
renWin->Render();
}
Screenshot("Fig3-31c.png", renWin);
renWin->EraseOn();
}
void Rotate_XY(vtkActor* cowActor, vtkRenderer* ren, vtkRenderWindow* renWin)
{
// First a rotation about the x axis, then six rotations about the y axis.
ren->ResetCamera();
ren->ResetCameraClippingRange();
cowActor->SetOrientation(0.0, 0.0, 0.0);
cowActor->SetOrigin(0.0, 0.0, 0);
cowActor->SetPosition(0, 0, 0);
// Get the focal point.
const double* bounds = cowActor->GetBounds();
double fp[3];
for (int i = 0; i < 3; ++i)
{
fp[i] = (bounds[i * 2 + 1] + bounds[i * 2]) / 2.0;
}
// This closely matches the original illustration.
ren->GetActiveCamera()->SetPosition(2, 0, 25);
ren->GetActiveCamera()->SetFocalPoint(fp);
ren->GetActiveCamera()->SetViewUp(0, 1, 0);
ren->ResetCameraClippingRange();
renWin->Render();
renWin->Render();
renWin->EraseOff();
cowActor->RotateX(60);
for (int idx = 0; idx < 6; idx++)
{
cowActor->RotateY(60);
renWin->Render();
renWin->Render();
}
cowActor->RotateX(-60);
Screenshot("Fig3-31d.png", renWin);
renWin->EraseOn();
}
void Rotate_V_0(vtkActor* cowActor, vtkRenderer* ren, vtkRenderWindow* renWin)
{
// The cow rotating about a vector passing through her nose.
// With the origin at (0, 0, 0).
ren->ResetCamera();
ren->ResetCameraClippingRange();
cowActor->SetOrientation(0.0, 0.0, 0.0);
cowActor->SetOrigin(0.0, 0.0, 0);
cowActor->SetPosition(0, 0, 0);
// Get the focal point.
const double* bounds = cowActor->GetBounds();
double fp[3];
for (int i = 0; i < 3; ++i)
{
fp[i] = (bounds[i * 2 + 1] + bounds[i * 2]) / 2.0;
}
vtkNew<vtkTransform> cowPos;
cowPos->Identity();
cowPos->SetMatrix(cowActor->GetMatrix());
vtkNew<vtkTransform> cowTransform;
cowTransform->Identity();
cowActor->SetUserMatrix(cowTransform->GetMatrix());
// This closely matches the original illustration.
ren->GetActiveCamera()->SetPosition(16, 9, -12);
ren->GetActiveCamera()->SetFocalPoint(fp);
ren->ResetCameraClippingRange();
renWin->Render();
renWin->Render();
renWin->EraseOff();
for (int idx = 0; idx < 6; idx++)
{
cowActor->RotateWXYZ(60, 2.19574, -1.42455, -0.0331036);
renWin->Render();
renWin->Render();
}
Screenshot("Fig3-33a.png", renWin);
renWin->EraseOn();
// Put the cow back on the origin.
// for (int idx = 0; idx < 6; idx++)
//{
// cowActor->RotateWXYZ(-60, 2.19574, -1.42455, -0.0331036);
//}
// cowActor->SetUserMatrix(cowPos->GetMatrix());
// ren->GetActiveCamera()->SetPosition(0, 0, 1);
// ren->GetActiveCamera()->SetViewUp(0, 1, 0);
// ren->ResetCamera();
}
void Rotate_V_V(vtkActor* cowActor, vtkRenderer* ren, vtkRenderWindow* renWin)
{
// The cow rotating about a vector passing through her nose.
// With the origin at (6.11414, 1.27386, 0.015175).
ren->ResetCamera();
ren->ResetCameraClippingRange();
cowActor->SetOrientation(0.0, 0.0, 0.0);
cowActor->SetOrigin(0.0, 0.0, 0);
cowActor->SetPosition(0, 0, 0);
// Get the focal point.
const double* bounds = cowActor->GetBounds();
double fp[3];
for (int i = 0; i < 3; ++i)
{
fp[i] = (bounds[i * 2 + 1] + bounds[i * 2]) / 2.0;
}
vtkNew<vtkTransform> cowPos;
cowPos->Identity();
cowPos->SetMatrix(cowActor->GetMatrix());
cowActor->SetOrigin(6.11414, 1.27386, 0.015175); // The cow's nose
vtkNew<vtkTransform> cowTransform;
cowTransform->Identity();
cowActor->SetUserMatrix(cowTransform->GetMatrix());
// This closely matches the original illustration.
ren->GetActiveCamera()->SetPosition(31, 23, -21);
ren->GetActiveCamera()->SetFocalPoint(fp);
ren->ResetCameraClippingRange();
renWin->Render();
renWin->Render();
renWin->EraseOff();
for (int idx = 0; idx < 6; idx++)
{
cowActor->RotateWXYZ(60, 2.19574, -1.42455, -0.0331036);
renWin->Render();
renWin->Render();
}
Screenshot("Fig3-33b.png", renWin);
renWin->EraseOn();
// Put the cow back on the origin.
// for (int idx = 0; idx < 6; idx++)
//{
// cowActor->RotateWXYZ(-60, 2.19574, -1.42455, -0.0331036);
//}
// cowActor->SetUserMatrix(cowPos->GetMatrix());
}
void Walk(vtkActor* cowActor, vtkRenderer* ren, vtkRenderWindow* renWin)
{
// The cow "walking" around the global origin
vtkNew<vtkTransform> cowPos;
cowPos->Identity();
cowPos->SetMatrix(cowActor->GetMatrix());
cowActor->SetOrientation(0.0, 0.0, 0.0);
cowActor->SetOrigin(0.0, 0.0, 0.0);
// Get the focal point.
const double* bounds = cowActor->GetBounds();
double fp[3];
for (int i = 0; i < 3; ++i)
{
fp[i] = (bounds[i * 2 + 1] + bounds[i * 2]) / 2.0;
}
vtkNew<vtkTransform> cowTransform;
cowTransform->Identity();
cowTransform->Translate(0, 0, 5);
cowActor->SetUserMatrix(cowTransform->GetMatrix());
// This closely matches the original illustration.
ren->GetActiveCamera()->SetPosition(1, 24, 16);
ren->GetActiveCamera()->SetFocalPoint(fp);
ren->GetActiveCamera()->SetViewUp(0, 0, -1);
ren->ResetCameraClippingRange();
renWin->Render();
renWin->Render();
renWin->EraseOff();
for (int idx = 0; idx < 6; idx++)
{
cowTransform->Identity();
cowTransform->RotateY(idx * 60);
cowTransform->Translate(0, 0, 5);
cowActor->SetUserMatrix(cowTransform->GetMatrix());
renWin->Render();
renWin->Render();
}
Screenshot("Fig3-32.png", renWin);
renWin->EraseOn();
// Walkies are over, put the cow back on the origin.
// cowActor->SetUserMatrix(cowPos->GetMatrix());
}
/*
static void CameraModifiedCallback(vtkObject* caller,
long unsigned int vtkNotUsed(eventId),
void* vtkNotUsed(clientData),
void* vtkNotUsed(callData))
{
std::cout << caller->GetClassName() << " modified" << std::endl;
vtkCamera* camera = static_cast<vtkCamera*>(caller);
// Print the interesting stuff.
std::cout << "\tPosition: " << camera->GetPosition()[0] << ", "
<< camera->GetPosition()[1] << ", " << camera->GetPosition()[2]
<< std::endl;
std::cout << "\tFocal point: " << camera->GetFocalPoint()[0] << ", "
<< camera->GetFocalPoint()[1] << ", " << camera->GetFocalPoint()[2]
<< std::endl;
}
*/
void Screenshot(std::string const& fileName, vtkRenderWindow* renWin)
{
vtkNew<vtkWindowToImageFilter> windowToImageFilter;
windowToImageFilter->SetInput(renWin);
#if VTK_MAJOR_VERSION > 8 || VTK_MAJOR_VERSION == 8 && VTK_MINOR_VERSION >= 1
windowToImageFilter->SetScale(1); // image quality
#else
windowToImageFilter->SetMagnification(1); // image quality
#endif
// We are not recording the alpha (transparency) channel.
// windowToImageFilter->SetInputBufferTypeToRGBA();
windowToImageFilter->SetInputBufferTypeToRGB();
// Read from the front buffer.
windowToImageFilter->ReadFrontBufferOff();
windowToImageFilter->Update();
vtkNew<vtkPNGWriter> writer;
writer->SetFileName(fileName.c_str());
writer->SetInputConnection(windowToImageFilter->GetOutputPort());
writer->Write();
}
} // namespace
CMakeLists.txt¶
cmake_minimum_required(VERSION 3.12 FATAL_ERROR)
project(WalkCow)
find_package(VTK COMPONENTS
CommonColor
CommonCore
CommonTransforms
FiltersGeneral
IOGeometry
IOImage
InteractionStyle
RenderingContextOpenGL2
RenderingCore
RenderingFreeType
RenderingGL2PSOpenGL2
RenderingOpenGL2
)
if (NOT VTK_FOUND)
message(FATAL_ERROR "WalkCow: Unable to find the VTK build folder.")
endif()
# Prevent a "command line is too long" failure in Windows.
set(CMAKE_NINJA_FORCE_RESPONSE_FILE "ON" CACHE BOOL "Force Ninja to use response files.")
add_executable(WalkCow MACOSX_BUNDLE WalkCow.cxx )
target_link_libraries(WalkCow PRIVATE ${VTK_LIBRARIES}
)
# vtk_module_autoinit is needed
vtk_module_autoinit(
TARGETS WalkCow
MODULES ${VTK_LIBRARIES}
)
Download and Build WalkCow¶
Click here to download WalkCow and its CMakeLists.txt file. Once the tarball WalkCow.tar has been downloaded and extracted,
cd WalkCow/build
If VTK is installed:
cmake ..
If VTK is not installed but compiled on your system, you will need to specify the path to your VTK build:
cmake -DVTK_DIR:PATH=/home/me/vtk_build ..
Build the project:
make
and run it:
./WalkCow
WINDOWS USERS
Be sure to add the VTK bin directory to your path. This will resolve the VTK dll's at run time.