Rainbow
Repository source: Rainbow
Description¶
This example demonstrates the use and manipulation of vtkLookupTable's.
First a simple pipeline that reads a vtkStructuredGrid and then extracts a plane using vtkStructuredGeometryFilter from the grid. The plane will be colored differently by using different vtkLookupTable's.
Note
The Update method is manually invoked because it causes the reader to read; later on we use the output of the reader to set a range for the scalar values.
Note
This original tcl source code for this example is here.
Info
See Figure 6-3 in Chapter 6 the VTK Textbook.
Other languages
See (Python)
Question
If you have a question about this example, please use the VTK Discourse Forum
Code¶
Rainbow.cxx
#include <vtkActor.h>
#include <vtkCamera.h>
#include <vtkLookupTable.h>
#include <vtkMultiBlockDataSet.h>
#include <vtkMultiBlockPLOT3DReader.h>
#include <vtkNamedColors.h>
#include <vtkNew.h>
#include <vtkPolyDataMapper.h>
#include <vtkRenderWindow.h>
#include <vtkRenderWindowInteractor.h>
#include <vtkRenderer.h>
#include <vtkSmartPointer.h>
#include <vtkStructuredGrid.h>
#include <vtkStructuredGridGeometryFilter.h>
#include <vtkStructuredGridOutlineFilter.h>
#include <iostream>
#include <string>
// This example demonstrates the use and manipulation of lookup tables.
// First create a simple pipeline that reads a structured grid
// and then extracts a plane from the grid. The plane will be colored
// differently by using different lookup tables.
//
// Note: The Update method is manually invoked because it causes the
// reader to read; later on we use the output of the reader to set
// a range for the scalar values.
int main(int argc, char* argv[])
{
if (argc < 3)
{
std::cout << "Usage: " << argv[0]
<< " filexyz.bin fileq.bin e.g.: combxyz.bin combq.bin"
<< std::endl;
return EXIT_FAILURE;
}
vtkNew<vtkNamedColors> colors;
vtkNew<vtkMultiBlockPLOT3DReader> pl3d;
pl3d->SetXYZFileName(argv[1]);
pl3d->SetQFileName(argv[2]);
pl3d->SetScalarFunctionNumber(100);
pl3d->SetVectorFunctionNumber(202);
pl3d->Update();
vtkStructuredGrid* pl3dOutput =
dynamic_cast<vtkStructuredGrid*>(pl3d->GetOutput()->GetBlock(0));
std::vector<vtkSmartPointer<vtkRenderer>> renderers;
// Create the 4 renderers
vtkNew<vtkRenderer> grayScaleRenderer;
renderers.push_back(grayScaleRenderer);
vtkNew<vtkRenderer> rainbowBlueRedRenderer;
renderers.push_back(rainbowBlueRedRenderer);
vtkNew<vtkRenderer> rainbowRedBlueRenderer;
renderers.push_back(rainbowRedBlueRenderer);
vtkNew<vtkRenderer> largeContrastRenderer;
renderers.push_back(largeContrastRenderer);
std::vector<vtkSmartPointer<vtkLookupTable>> luts;
vtkNew<vtkLookupTable> grayScaleLut;
grayScaleLut->SetHueRange(0, 0);
grayScaleLut->SetSaturationRange(0, 0);
grayScaleLut->SetValueRange(0.2, 1.0);
grayScaleLut->SetNumberOfColors(256);
grayScaleLut->SetHueRange(0.0, 0.667);
grayScaleLut->Build();
luts.push_back(grayScaleLut);
vtkNew<vtkLookupTable> rainbowBlueRedLut;
rainbowBlueRedLut->SetNumberOfColors(256);
rainbowBlueRedLut->SetHueRange(0.667, 0.0);
rainbowBlueRedLut->Build();
luts.push_back(rainbowBlueRedLut);
vtkNew<vtkLookupTable> rainbowRedBlueLut;
rainbowRedBlueLut->SetNumberOfColors(256);
rainbowRedBlueLut->SetHueRange(0.0, 0.667);
rainbowRedBlueLut->Build();
luts.push_back(rainbowRedBlueLut);
vtkNew<vtkLookupTable> highContrastLut;
highContrastLut->SetNumberOfColors(256);
highContrastLut->Build();
for (int l = 0; l < 16; ++l)
{
highContrastLut->SetTableValue(l * 16, 1, 0, 0, 1);
highContrastLut->SetTableValue(l * 16 + 1, 0, 1, 0, 1);
highContrastLut->SetTableValue(l * 16 + 2, 0, 0, 1, 1);
highContrastLut->SetTableValue(l * 16 + 3, 0, 0, 0, 1);
}
luts.push_back(highContrastLut);
vtkNew<vtkRenderWindow> renderWindow;
vtkNew<vtkRenderWindowInteractor> interactor;
interactor->SetRenderWindow(renderWindow);
int rendererSize = 256;
unsigned int xGridDimensions = 2;
unsigned int yGridDimensions = 2;
renderWindow->SetSize(rendererSize * xGridDimensions,
rendererSize * yGridDimensions);
for (int row = 0; row < static_cast<int>(yGridDimensions); row++)
{
for (int col = 0; col < static_cast<int>(xGridDimensions); col++)
{
int index = row * xGridDimensions + col;
// (xmin, ymin, xmax, ymax)
double viewport[4] = {
static_cast<double>(col) / xGridDimensions,
static_cast<double>(yGridDimensions - (row + 1)) / yGridDimensions,
static_cast<double>(col + 1) / xGridDimensions,
static_cast<double>(yGridDimensions - row) / yGridDimensions};
renderers[index]->SetViewport(viewport);
}
}
vtkNew<vtkStructuredGridGeometryFilter> plane;
plane->SetInputData(pl3dOutput);
plane->SetExtent(1, 100, 1, 100, 7, 7);
for (size_t r = 0; r < renderers.size(); ++r)
{
vtkSmartPointer<vtkLookupTable> lut = luts[r];
vtkNew<vtkPolyDataMapper> planeMapper;
planeMapper->SetLookupTable(lut);
planeMapper->SetInputConnection(plane->GetOutputPort());
planeMapper->SetScalarRange(pl3dOutput->GetScalarRange());
vtkNew<vtkActor> planeActor;
planeActor->SetMapper(planeMapper);
// This creates an outline around the data.
vtkNew<vtkStructuredGridOutlineFilter> outline;
outline->SetInputData(pl3dOutput);
vtkNew<vtkPolyDataMapper> outlineMapper;
outlineMapper->SetInputConnection(outline->GetOutputPort());
vtkNew<vtkActor> outlineActor;
outlineActor->SetMapper(outlineMapper);
// Create the RenderWindow, Renderer and both Actors.
//
renderers[r]->AddActor(outlineActor);
renderers[r]->AddActor(planeActor);
renderers[r]->SetBackground(colors->GetColor3d("SlateGray").GetData());
renderers[r]->TwoSidedLightingOff();
renderers[r]->GetActiveCamera()->Azimuth(20);
renderers[r]->GetActiveCamera()->Elevation(30);
renderers[r]->ResetCamera();
if (r > 0)
{
renderers[r]->SetActiveCamera(renderers[0]->GetActiveCamera());
}
renderWindow->AddRenderer(renderers[r]);
}
// Add the actors to the renderer, set the background and size.
renderWindow->SetSize(rendererSize * xGridDimensions,
rendererSize * yGridDimensions);
renderWindow->SetWindowName("Rainbow");
interactor->Initialize();
vtkCamera* cam1 = renderers[0]->GetActiveCamera();
cam1->SetClippingRange(3.95297, 50);
cam1->SetFocalPoint(8.88908, 0.595038, 29.3342);
cam1->SetPosition(-12.3332, 31.7479, 41.2387);
cam1->SetViewUp(0.060772, -0.319905, 0.945498);
renderWindow->Render();
interactor->Start();
return EXIT_SUCCESS;
}
CMakeLists.txt¶
cmake_minimum_required(VERSION 3.12 FATAL_ERROR)
project(Rainbow)
find_package(VTK COMPONENTS
CommonColor
CommonCore
CommonDataModel
FiltersCore
FiltersGeometry
IOParallel
InteractionStyle
RenderingContextOpenGL2
RenderingCore
RenderingFreeType
RenderingGL2PSOpenGL2
RenderingOpenGL2
)
if (NOT VTK_FOUND)
message(FATAL_ERROR "Rainbow: Unable to find the VTK build folder.")
endif()
# Prevent a "command line is too long" failure in Windows.
set(CMAKE_NINJA_FORCE_RESPONSE_FILE "ON" CACHE BOOL "Force Ninja to use response files.")
add_executable(Rainbow MACOSX_BUNDLE Rainbow.cxx )
target_link_libraries(Rainbow PRIVATE ${VTK_LIBRARIES}
)
# vtk_module_autoinit is needed
vtk_module_autoinit(
TARGETS Rainbow
MODULES ${VTK_LIBRARIES}
)
Download and Build Rainbow¶
Click here to download Rainbow and its CMakeLists.txt file. Once the tarball Rainbow.tar has been downloaded and extracted,
cd Rainbow/build
If VTK is installed:
cmake ..
If VTK is not installed but compiled on your system, you will need to specify the path to your VTK build:
cmake -DVTK_DIR:PATH=/home/me/vtk_build ..
Build the project:
make
and run it:
./Rainbow
WINDOWS USERS
Be sure to add the VTK bin directory to your path. This will resolve the VTK dll's at run time.