Cone4
Repository source: Cone4
Description¶
This example modifies vtkActor's properties and transformation matrix.
Info
See Figure 3-28 in Chapter 3 the VTK Textbook.
Other languages
See (Python)
Question
If you have a question about this example, please use the VTK Discourse Forum
Code¶
Cone4.cxx
//
// This example demonstrates the creation of multiple actors and the
// manipulation of their properties and transformations. It is a
// derivative of Cone.tcl, see that example for more information.
//
// First include the required header files for the VTK classes we are using.
#include <vtkActor.h>
#include <vtkCamera.h>
#include <vtkConeSource.h>
#include <vtkNamedColors.h>
#include <vtkNew.h>
#include <vtkPolyDataMapper.h>
#include <vtkProperty.h>
#include <vtkRenderWindow.h>
#include <vtkRenderWindowInteractor.h>
#include <vtkRenderer.h>
int main(int, char*[])
{
vtkNew<vtkNamedColors> colors;
//
// Next we create an instance of vtkConeSource and set some of its
// properties. The instance of vtkConeSource "cone" is part of a
// visualization pipeline (it is a source process object); it produces data
// (output type is vtkPolyData) which other filters may process.
//
vtkNew<vtkConeSource> cone;
cone->SetHeight(3.0);
cone->SetRadius(1.0);
cone->SetResolution(10);
//
// In this example we terminate the pipeline with a mapper process object.
// (Intermediate filters such as vtkShrinkPolyData could be inserted in
// between the source and the mapper.) We create an instance of
// vtkPolyDataMapper to map the polygonal data into graphics primitives. We
// connect the output of the cone source to the input of this mapper.
//
vtkNew<vtkPolyDataMapper> coneMapper;
coneMapper->SetInputConnection(cone->GetOutputPort());
//
// Create an actor to represent the first cone. The actor's properties are
// modified to give it different surface properties. By default, an actor
// is create with a property so the GetProperty() method can be used.
//
vtkNew<vtkActor> coneActor;
coneActor->SetMapper(coneMapper);
coneActor->GetProperty()->SetColor(colors->GetColor3d("Peacock").GetData());
coneActor->GetProperty()->SetDiffuse(0.7);
coneActor->GetProperty()->SetSpecular(0.4);
coneActor->GetProperty()->SetSpecularPower(20);
//
// Create a property and directly manipulate it. Assign it to the
// second actor.
//
vtkNew<vtkProperty> property;
property->SetColor(colors->GetColor3d("Tomato").GetData());
property->SetDiffuse(0.7);
property->SetSpecular(0.4);
property->SetSpecularPower(20);
//
// Create a second actor and a property. The property is directly
// manipulated and then assigned to the actor. In this way, a single
// property can be shared among many actors. Note also that we use the
// same mapper as the first actor did. This way we avoid duplicating
// geometry, which may save lots of memory if the geoemtry is large.
vtkNew<vtkActor> coneActor2;
coneActor2->SetMapper(coneMapper);
coneActor2->GetProperty()->SetColor(colors->GetColor3d("Peacock").GetData());
coneActor2->SetProperty(property);
coneActor2->SetPosition(0, 2, 0);
//
// Create the Renderer and assign actors to it. A renderer is like a
// viewport. It is part or all of a window on the screen and it is
// responsible for drawing the actors it has. We also set the background
// color here.
//
vtkNew<vtkRenderer> ren1;
ren1->AddActor(coneActor);
ren1->AddActor(coneActor2);
ren1->SetBackground(colors->GetColor3d("LightSlateGray").GetData());
//
// Finally we create the render window which will show up on the screen.
// We put our renderer into the render window using AddRenderer. We also
// set the size to be 300 pixels by 300.
//
vtkNew<vtkRenderWindow> renWin;
renWin->AddRenderer(ren1);
renWin->SetSize(640, 480);
renWin->SetWindowName("Cone4");
vtkNew<vtkRenderWindowInteractor> iren;
iren->SetRenderWindow(renWin);
//
// Now we loop over 60 degrees and render the cone each time.
//
ren1->GetActiveCamera()->Elevation(30);
ren1->ResetCamera();
for (int i = 0; i < 60; ++i)
{
// render the image
renWin->Render();
// rotate the active camera by one degree
ren1->GetActiveCamera()->Azimuth(1);
}
iren->Start();
return EXIT_SUCCESS;
}
CMakeLists.txt¶
cmake_minimum_required(VERSION 3.12 FATAL_ERROR)
project(Cone4)
find_package(VTK COMPONENTS
CommonColor
CommonCore
FiltersSources
InteractionStyle
RenderingContextOpenGL2
RenderingCore
RenderingFreeType
RenderingGL2PSOpenGL2
RenderingOpenGL2
)
if (NOT VTK_FOUND)
message(FATAL_ERROR "Cone4: Unable to find the VTK build folder.")
endif()
# Prevent a "command line is too long" failure in Windows.
set(CMAKE_NINJA_FORCE_RESPONSE_FILE "ON" CACHE BOOL "Force Ninja to use response files.")
add_executable(Cone4 MACOSX_BUNDLE Cone4.cxx )
target_link_libraries(Cone4 PRIVATE ${VTK_LIBRARIES}
)
# vtk_module_autoinit is needed
vtk_module_autoinit(
TARGETS Cone4
MODULES ${VTK_LIBRARIES}
)
Download and Build Cone4¶
Click here to download Cone4 and its CMakeLists.txt file. Once the tarball Cone4.tar has been downloaded and extracted,
cd Cone4/build
If VTK is installed:
cmake ..
If VTK is not installed but compiled on your system, you will need to specify the path to your VTK build:
cmake -DVTK_DIR:PATH=/home/me/vtk_build ..
Build the project:
make
and run it:
./Cone4
WINDOWS USERS
Be sure to add the VTK bin directory to your path. This will resolve the VTK dll's at run time.