EnhanceEdges
Repository source: EnhanceEdges
Description¶
High-pass filters can also be used to compress the range of an image. Since low frequencies account for much of the dynamic range of an image but carry little information, a high-pass filter can significantly decrease an image’s scalar range and emphasize hidden details. The Laplacian filter, which is a second derivative operation, is one implementation of a high-pass filter. It eliminates constant and low frequencies leaving only high-frequency edges. The output of the Laplacian can be subtracted from the original image to produce edge enhancement or sharpening of an image.
This example subtracts the Laplacian (middle) from the original image (left) resulting in edge enhancement or a sharpening operation (right).
Info
See this figure in Chapter 10 the VTK Textbook.
Other languages
See (Python), (PythonicAPI)
Question
If you have a question about this example, please use the VTK Discourse Forum
Code¶
EnhanceEdges.cxx
#include <vtkCamera.h>
#include <vtkDataArray.h>
#include <vtkImageActor.h>
#include <vtkImageCast.h>
#include <vtkImageData.h>
#include <vtkImageLaplacian.h>
#include <vtkImageMapToWindowLevelColors.h>
#include <vtkImageMapper3D.h>
#include <vtkImageMathematics.h>
#include <vtkImageProperty.h>
#include <vtkImageReader2.h>
#include <vtkImageReader2Factory.h>
#include <vtkInteractorStyleImage.h>
#include <vtkNew.h>
#include <vtkPointData.h>
#include <vtkRenderWindow.h>
#include <vtkRenderWindowInteractor.h>
#include <vtkRenderer.h>
#include <vtkSmartPointer.h>
#include <vector>
int main(int argc, char* argv[])
{
// Verify input arguments.
if (argc != 2)
{
std::cout << "Usage: " << argv[0] << " Filename e.g. FullHead.mhd"
<< std::endl;
return EXIT_FAILURE;
}
// Read the image
vtkNew<vtkImageReader2Factory> readerFactory;
vtkSmartPointer<vtkImageReader2> reader;
reader.TakeReference(readerFactory->CreateImageReader2(argv[1]));
reader->SetFileName(argv[1]);
reader->Update();
int scalarRange[2];
scalarRange[0] =
reader->GetOutput()->GetPointData()->GetScalars()->GetRange()[0];
scalarRange[1] =
reader->GetOutput()->GetPointData()->GetScalars()->GetRange()[1];
std::cout << "Range: " << scalarRange[0] << ", " << scalarRange[1]
<< std::endl;
// int middleSlice = (reader->GetOutput()->GetExtent()[5] -
// reader->GetOutput()->GetExtent()[4]) /
// 2;
// Better to use this value.
auto middleSlice = 22;
// Work with triple images
vtkNew<vtkImageCast> cast;
cast->SetInputConnection(reader->GetOutputPort());
cast->SetOutputScalarTypeToDouble();
cast->Update();
vtkNew<vtkImageLaplacian> laplacian;
laplacian->SetInputConnection(cast->GetOutputPort());
laplacian->SetDimensionality(3);
vtkNew<vtkImageMathematics> enhance;
enhance->SetInputConnection(0, cast->GetOutputPort());
enhance->SetInputConnection(1, laplacian->GetOutputPort());
enhance->SetOperationToSubtract();
int colorWindow = (scalarRange[1] - scalarRange[0]);
int colorLevel = colorWindow / 2;
// Map the image through the lookup table.
vtkNew<vtkImageMapToWindowLevelColors> originalColor;
originalColor->SetWindow(colorWindow);
originalColor->SetLevel(colorLevel);
originalColor->SetInputConnection(reader->GetOutputPort());
vtkNew<vtkImageActor> originalActor;
originalActor->GetMapper()->SetInputConnection(
originalColor->GetOutputPort());
originalActor->GetProperty()->SetInterpolationTypeToNearest();
originalActor->SetDisplayExtent(
reader->GetDataExtent()[0], reader->GetDataExtent()[1],
reader->GetDataExtent()[2], reader->GetDataExtent()[3], middleSlice,
middleSlice);
vtkNew<vtkImageMapToWindowLevelColors> laplacianColor;
laplacianColor->SetWindow(1000);
laplacianColor->SetLevel(0);
laplacianColor->SetInputConnection(laplacian->GetOutputPort());
vtkNew<vtkImageActor> laplacianActor;
laplacianActor->GetMapper()->SetInputConnection(
laplacianColor->GetOutputPort());
laplacianActor->GetProperty()->SetInterpolationTypeToNearest();
laplacianActor->SetDisplayExtent(originalActor->GetDisplayExtent());
vtkNew<vtkImageMapToWindowLevelColors> enhancedColor;
enhancedColor->SetWindow(colorWindow);
enhancedColor->SetLevel(colorLevel);
enhancedColor->SetInputConnection(enhance->GetOutputPort());
vtkNew<vtkImageActor> enhancedActor;
enhancedActor->GetMapper()->SetInputConnection(
enhancedColor->GetOutputPort());
enhancedActor->GetProperty()->SetInterpolationTypeToNearest();
enhancedActor->SetDisplayExtent(originalActor->GetDisplayExtent());
// Setup renderers.
vtkNew<vtkRenderer> originalRenderer;
originalRenderer->AddActor(originalActor);
vtkNew<vtkRenderer> laplacianRenderer;
laplacianRenderer->AddActor(laplacianActor);
vtkNew<vtkRenderer> enhancedRenderer;
enhancedRenderer->AddActor(enhancedActor);
std::vector<vtkSmartPointer<vtkRenderer>> renderers;
renderers.push_back(originalRenderer);
renderers.push_back(laplacianRenderer);
renderers.push_back(enhancedRenderer);
// Setup viewports for the renderers.
int rendererSize = 400;
unsigned int xGridDimensions = 3;
unsigned int yGridDimensions = 1;
vtkNew<vtkRenderWindow> renderWindow;
renderWindow->SetSize(rendererSize * xGridDimensions,
rendererSize * yGridDimensions);
for (int row = 0; row < static_cast<int>(yGridDimensions); row++)
{
for (int col = 0; col < static_cast<int>(xGridDimensions); col++)
{
int index = row * xGridDimensions + col;
// (xmin, ymin, xmax, ymax)
double viewport[4] = {
static_cast<double>(col) / xGridDimensions,
static_cast<double>(yGridDimensions - (row + 1)) / yGridDimensions,
static_cast<double>(col + 1) / xGridDimensions,
static_cast<double>(yGridDimensions - row) / yGridDimensions};
renderers[index]->SetViewport(viewport);
renderWindow->AddRenderer(renderers[index]);
}
}
renderWindow->SetWindowName("EnhanceEdges");
vtkNew<vtkRenderWindowInteractor> renderWindowInteractor;
vtkNew<vtkInteractorStyleImage> style;
renderWindowInteractor->SetInteractorStyle(style);
renderWindowInteractor->SetRenderWindow(renderWindow);
// Renderers share one camera.
renderWindow->Render();
renderers[0]->GetActiveCamera()->Dolly(1.5);
renderers[0]->ResetCameraClippingRange();
for (size_t r = 1; r < renderers.size(); ++r)
{
renderers[r]->SetActiveCamera(renderers[0]->GetActiveCamera());
}
renderWindowInteractor->Initialize();
renderWindowInteractor->Start();
return EXIT_SUCCESS;
}
CMakeLists.txt¶
cmake_minimum_required(VERSION 3.12 FATAL_ERROR)
project(EnhanceEdges)
find_package(VTK COMPONENTS
CommonCore
CommonDataModel
IOImage
ImagingColor
ImagingCore
ImagingGeneral
ImagingMath
InteractionStyle
RenderingContextOpenGL2
RenderingCore
RenderingFreeType
RenderingGL2PSOpenGL2
RenderingOpenGL2
)
if (NOT VTK_FOUND)
message(FATAL_ERROR "EnhanceEdges: Unable to find the VTK build folder.")
endif()
# Prevent a "command line is too long" failure in Windows.
set(CMAKE_NINJA_FORCE_RESPONSE_FILE "ON" CACHE BOOL "Force Ninja to use response files.")
add_executable(EnhanceEdges MACOSX_BUNDLE EnhanceEdges.cxx )
target_link_libraries(EnhanceEdges PRIVATE ${VTK_LIBRARIES}
)
# vtk_module_autoinit is needed
vtk_module_autoinit(
TARGETS EnhanceEdges
MODULES ${VTK_LIBRARIES}
)
Download and Build EnhanceEdges¶
Click here to download EnhanceEdges and its CMakeLists.txt file. Once the tarball EnhanceEdges.tar has been downloaded and extracted,
cd EnhanceEdges/build
If VTK is installed:
cmake ..
If VTK is not installed but compiled on your system, you will need to specify the path to your VTK build:
cmake -DVTK_DIR:PATH=/home/me/vtk_build ..
Build the project:
make
and run it:
./EnhanceEdges
WINDOWS USERS
Be sure to add the VTK bin directory to your path. This will resolve the VTK dll's at run time.